MAY 06, 2021 12:15 PM PDT

There's More to Viral DNA Than ATGC

WRITTEN BY: Carmen Leitch

Plants and animals have genomes made of four nucleotide bases, adenine (A), thymine (T), cytosine (C), and guanine (G). But there's another genetic 'letter' that's been identified; in 1977 a virus that infects bacteria, an organism called a bacteriophage, was found to carry a base called 2-aminoadenine (Z), which replaced the A bases in the bacteriophage's genome.

Image credit: Modified from Pixabay

While additional work showed that Z-DNA enabled the bacteriophage, dubbed S-2L, to resist the effects of bacterial enzymes that cut up viral DNA and other bacterial defense systems, little else was known about the purpose of Z bases in DNA.

It wasn't until 2015 that researchers led by Philippe Marlière, a geneticist at the University of Evry, France identified another bacteriophage, which infects Vibrio bacteria, that carried a gene that was also found in S-2L.

In 2019, scientists led by Suwen Zhao, a computational biologist at ShanghaiTech University in China found more phages that carried matching sequences. The researchers showed that all of these phages carry a gene called PurZ, which encodes an enzyme that has a critical role in generating Z nucleotides from its precursor, a molecule that's found in bacterial cells called dZTP. Additional work revealed the remainder of the enzymes and the genes that encode them, which comprise the pathway that makes Z nucleotides. Now, we know how Z bases are created.

This research, which was published in three papers in Science, went even further, and showed how Z bases end up in DNA. In the genome of the bacteriophage that infects Vibrio, there's a gene adjacent to PurZ in its genome. This gene encodes for an enzyme that copies strands of DNA, which is called a polymerase.

Marlier and colleague Pierre-Alexandre Kaminski of the Pasteur Institute in Paris determined that the bacteriophage's polymerase incorporates dZTP into DNA, and removes any A bases from the genome. “This explained to us why A was excluded,” Kaminski commented to Nature News. “This was really spectacular.”

Zhao suggested that we still have more to learn. Her team's research has indicated that there's another phage at play, which eliminates dATP but maintains dZTP in cells. Their study revealed that if there was more dZTP than dATP in a cell, the cell's own polymerase would start making DNA with Z bases.

Additional research will be needed to reveal how Z bases and DNA containing Z bases are beneficial to phages.

Sources: Nature News, Zhou et al Science 2021Sleiman et al Science 2021, Pezo et al Science 2021

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 24, 2021
Genetics & Genomics
Can Lung Viruses Trigger a Genetic Form of Diabetes?
OCT 24, 2021
Can Lung Viruses Trigger a Genetic Form of Diabetes?
Beta cells in the pancreas produce the insulin our body needs to properly regulate blood sugar. Diabetes results when th ...
NOV 02, 2021
Microbiology
Syphilis is on the Rise, and Infants are Paying a High Price
NOV 02, 2021
Syphilis is on the Rise, and Infants are Paying a High Price
Syphilis is on the rise worldwide, and it's killing infants. The disease is a leading cause of stillbirth worldwide, acc ...
NOV 03, 2021
Genetics & Genomics
Gene Therapy Could Make Parkinson's Drug More Effective
NOV 03, 2021
Gene Therapy Could Make Parkinson's Drug More Effective
In Parkinson's disease, neurons that produce the neurotransmitter dopamine in a part of the brain called the substantial ...
NOV 05, 2021
Genetics & Genomics
Solution to a Pigeon Genetic Mystery Provides Insight Into Development
NOV 05, 2021
Solution to a Pigeon Genetic Mystery Provides Insight Into Development
This photo by Sydney Stringham shows the domestic pigeons that were bred by the researchers for this research.
NOV 09, 2021
Plants & Animals
It Seems a Single Molecule Can Govern Ant Behavior
NOV 09, 2021
It Seems a Single Molecule Can Govern Ant Behavior
Some people change careers, and it seems that the Harpegnathos saltator ant can do the same; worker ants can switch to q ...
NOV 16, 2021
Plants & Animals
Gene-Edited Barley Can Secure the Beer Supply in a Changing Climate
NOV 16, 2021
Gene-Edited Barley Can Secure the Beer Supply in a Changing Climate
Climate change is threatening many of the world's crops, and may disrupt the growth of barley that's used to make beer.
Loading Comments...