JAN 19, 2016 3:35 PM PST

Genetic Switches in Butterflies Create Incredibly Diverse Wing Patterns

WRITTEN BY: Kara Marker
Amazonian Heliconius butterflies have a distinctive coloring, known as the “dennis red patch” and the “ray red streaks” on each side of the wing. These colors come from different genes that derived from two completely different species of butterfly. These two species interbred almost two million years ago, an event that led to the existence of the current Heliconius butterflies.
 
Wing patterns from various Heliconius butterflies

 
“Survival of the fittest” is often a phrase that rings true during the process of evolution. Over time, natural selection favors the qualities of organisms that make them stronger, tougher, or more likely to produce offspring. What’s in it for the butterflies to exchange wing color? Scientists believe that the diversity of Heliconius wing color allows multiple species of butterflies to communicate with “common warning signs” that deter predators from attacking or eating the butterflies. Thus, the Heliconius populations that have the most diverse arsenal of wing patterns could potentially have the best chance of avoiding predation.
 
In a new study from the University of Cambridge published in PLOS Biology, senior author Chris Jiggins, PhD, and his team realized that natural selection wasn’t favoring wing pattern diversity just from the sharing of genes through interbreeding of butterfly species. Over time, new combinations of genes could produce completely new wing patterns, controlled by “independent genetic switches” that Cambridge professor Richard Wallbank likens to a “genetic paint-box.”
 
After sequencing and analyzing the genomes from 142 butterflies from the 17 species of Heliconius, the researchers identified the switches as independently controlling their associated gene. They focused specifically on the “dennis red patch” and “ray red streaks” of the Heliconius.
 
"By identifying the genetic switches associated with bits of wing pattern, when they evolved and how they diverged, we can actually map onto the species tree how these little regions of color have jumped between species,” Jiggins said.
 
The connection between the genetic switches and the wing pattern genes they control is utterly specific, creating truly unique patterns of color in each individual butterfly.
 
"It is the switches that are independent, which is much subtler and powerful, allowing evolutionary tinkering with the wing pattern,” Wallbank said.
 
Scientists will continue to watch the Heliconius butterflies’ wing pattern grow in diversity, evolved after the interbreeding of species over two million years ago.
 

Source: University of Cambridge
 
About the Author
I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
SEP 28, 2022
Microbiology
Humans and Our Gut Microbes Evolved Together
SEP 28, 2022
Humans and Our Gut Microbes Evolved Together
We each carry thousands of different species of microorganisms in our gastrointestinal tracts, and that gut microbiome h ...
OCT 02, 2022
Immunology
A Network Linking Aging, Inflammation, and Diet
OCT 02, 2022
A Network Linking Aging, Inflammation, and Diet
Our immune system is crucial to our health. It has to respond to pathogens and tissue damage quickly by initiating infla ...
NOV 04, 2022
Immunology
From Fleas to Natural Selection: The Black Plague & Modern Immunology
NOV 04, 2022
From Fleas to Natural Selection: The Black Plague & Modern Immunology
Acknowledgments of our many physiological changes since the evolution of modern humans have been studied profusely, espe ...
NOV 09, 2022
Drug Discovery & Development
Neanderthal Genes Risk Causing Toxicity with Common Drugs
NOV 09, 2022
Neanderthal Genes Risk Causing Toxicity with Common Drugs
While the Neandertals have gone extinct, their DNA still lingers in the genome of modern humans, where it can help or ha ...
NOV 10, 2022
Neuroscience
HUSH - A Complex That Silences Genes & Helps Control Brain Architecture
NOV 10, 2022
HUSH - A Complex That Silences Genes & Helps Control Brain Architecture
The HUSH (human silencing hub) protein complex is known to silence genes, and researchers have thought that it could be ...
NOV 20, 2022
Genetics & Genomics
Researchers Find Gene Expression Differences in ADHD Brains
NOV 20, 2022
Researchers Find Gene Expression Differences in ADHD Brains
ADHD is one of the most common mental health conditions, and it is estimated to impact 5 - 8% of boys, according to the ...
Loading Comments...