JAN 19, 2016 3:35 PM PST

Genetic Switches in Butterflies Create Incredibly Diverse Wing Patterns

WRITTEN BY: Kara Marker
Amazonian Heliconius butterflies have a distinctive coloring, known as the “dennis red patch” and the “ray red streaks” on each side of the wing. These colors come from different genes that derived from two completely different species of butterfly. These two species interbred almost two million years ago, an event that led to the existence of the current Heliconius butterflies.
 
Wing patterns from various Heliconius butterflies

 
“Survival of the fittest” is often a phrase that rings true during the process of evolution. Over time, natural selection favors the qualities of organisms that make them stronger, tougher, or more likely to produce offspring. What’s in it for the butterflies to exchange wing color? Scientists believe that the diversity of Heliconius wing color allows multiple species of butterflies to communicate with “common warning signs” that deter predators from attacking or eating the butterflies. Thus, the Heliconius populations that have the most diverse arsenal of wing patterns could potentially have the best chance of avoiding predation.
 
In a new study from the University of Cambridge published in PLOS Biology, senior author Chris Jiggins, PhD, and his team realized that natural selection wasn’t favoring wing pattern diversity just from the sharing of genes through interbreeding of butterfly species. Over time, new combinations of genes could produce completely new wing patterns, controlled by “independent genetic switches” that Cambridge professor Richard Wallbank likens to a “genetic paint-box.”
 
After sequencing and analyzing the genomes from 142 butterflies from the 17 species of Heliconius, the researchers identified the switches as independently controlling their associated gene. They focused specifically on the “dennis red patch” and “ray red streaks” of the Heliconius.
 
"By identifying the genetic switches associated with bits of wing pattern, when they evolved and how they diverged, we can actually map onto the species tree how these little regions of color have jumped between species,” Jiggins said.
 
The connection between the genetic switches and the wing pattern genes they control is utterly specific, creating truly unique patterns of color in each individual butterfly.
 
"It is the switches that are independent, which is much subtler and powerful, allowing evolutionary tinkering with the wing pattern,” Wallbank said.
 
Scientists will continue to watch the Heliconius butterflies’ wing pattern grow in diversity, evolved after the interbreeding of species over two million years ago.
 

Source: University of Cambridge
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
JAN 08, 2020
Microbiology
JAN 08, 2020
Researchers Discover Many New Viruses That are Carried by Insects
Zoonotic diseases are caused by infectious microorganisms like bacteria or viruses, and are passed between animals, including humans....
JAN 09, 2020
Genetics & Genomics
JAN 09, 2020
Exploring the Genetic Link to Parental Neglect
Early life experiences impact how the brain is formed, and creates either a stable, solid foundation for later life, or a fragile architecture....
JAN 16, 2020
Genetics & Genomics
JAN 16, 2020
Sequence the Kraken! The Genome of the Giant Squid is Revealed
Giant squid, which can weigh over 900 kilograms and grow to thirteen meters, are the stuff of legend....
JAN 30, 2020
Genetics & Genomics
JAN 30, 2020
Genetically Engineered Bacteria Can Protect Bees From Pathogens
As pollinators, honey bees play a critical role in food production, and they have been suffering heavy losses for years....
FEB 14, 2020
Cancer
FEB 14, 2020
Cataloging Cancer: DNA fingerprints at work
New research published as part of a global Pan-Cancer Project highlights the world’s most comprehensive catalog to date of DNA fingerprints of cancer...
MAR 09, 2020
Genetics & Genomics
MAR 09, 2020
Researchers Alter How Bacteria Communicate
The bacterium Escherichia coli comes in many forms, and researchers have used a harmless strain of it to redesign how the microbes communicate....
Loading Comments...