MAR 04, 2016 8:00 AM PST

How epigenetics let scientists make giant ants

Until now scientists have believed the variations in traits that exist along a continuum—height, skin color, tendency to gain weight or not, intelligence, tendency to develop certain diseases, etc.—come from both genetic and environmental factors. But they didn’t know how exactly these things worked together.

By studying ants, researchers have identified a key mechanism by which environmental (or epigenetic) factors influence the expression of all of these traits, as well as many more.
 
"It's a discovery that completely changes our understanding of how human variation comes to be," says Professor Ehab Abouheif. "So many human traits, whether they are intelligence, height, or vulnerability to diseases such as cancer, exist along a continuum."

It’s a bit like an artist adding more or less white paint to black to create a palette of shades of gray. In effect, the study identifies the mechanism through which the environment interacts with specific genes, revealing environmental factors as an equal partner in determining complex traits.

“It’s a discovery that completely changes our understanding of how human variation comes to be,” says McGill University Professor Ehab Abouheif. “So many human traits, whether they are intelligence, height, or vulnerability to diseases such as cancer, exist along a continuum.

“If, as we believe, this epigenetic mechanism applies to a key gene in each area, the change is so enormous that it’s hard to even imagine right now how it will influence research in everything from health to cognitive development to farming.”

A team, led by Abouheif and Professor Moshe Szyf, has clearly identified a mechanism by which epigenetic factors—how the environment affects the expression of a single gene—have an overarching effect in creating quantitative variation in these kinds of complex traits.

The researchers arrived at this conclusion by conducting epigenetic experiments on ants from the species Camponotus floridanus (better known as the Florida carpenter ant).

Because there is little genetic influence in determining size variation of workers in a colony (they are on average 75 percent related), and because their genome has already been sequenced, it was possible for the researchers to focus on the effects of epigenetic factors in creating variations in size.

By increasing the degree of DNA methylation (a biochemical process that controls the expression of certain genes—a bit like a dimmer switch for a light bulb) of a gene involved in controlling growth called Egfr, they were able to create a spectrum of worker ant sizes despite the lack of genetic difference between one ant and the next.

Essentially, the researchers found that the more methylated the gene, the larger the size of the ants.

“Basically, what we found was a kind of cascading effect. By modifying the methylation of one particular gene that affects others, in this case the Egfr gene, we could affect all the other genes involved in cellular growth,” says Sebastian Alvarado, co-first author of the study in Nature Communications.

“We were working with ants, but it was a bit like discovering that we could create shorter or taller human beings.”

Source: McGill University

This article was originally published on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
AUG 31, 2020
Genetics & Genomics
A Treatment Avenue Opens for a Rare Disorder
AUG 31, 2020
A Treatment Avenue Opens for a Rare Disorder
Krabbe disease or globoid cell leukodystrophy is a rare and deadly disorder that affects about one in every 100,000 infa ...
SEP 10, 2020
Genetics & Genomics
Learning More About Racial Disparities in COVID-19
SEP 10, 2020
Learning More About Racial Disparities in COVID-19
While institutional racism in the healthcare system plays a major part, there seem to also be biological reasons why the ...
OCT 14, 2020
Genetics & Genomics
Robots Are Moving Developmental Biology Forward
OCT 14, 2020
Robots Are Moving Developmental Biology Forward
Researchers have created a robot that can analyze the effects of mutations that occur in portions of the genome that hel ...
OCT 19, 2020
Plants & Animals
Genetically Engineered Foods Could Alleviate Nutritional Deficiencies
OCT 19, 2020
Genetically Engineered Foods Could Alleviate Nutritional Deficiencies
There are over two billion people around the world that don't get the recommended levels of minerals and vitamins in ...
OCT 29, 2020
Genetics & Genomics
Severe Genomic Damage in Human Embryos Treated With CRISPR
OCT 29, 2020
Severe Genomic Damage in Human Embryos Treated With CRISPR
The CRISPR-Cas9 genomic editing system holds great promise for treating genetic errors that cause human disease. But we ...
NOV 23, 2020
Microbiology
Drug Resistance in Tuberculosis Involves a Unique Mechanism
NOV 23, 2020
Drug Resistance in Tuberculosis Involves a Unique Mechanism
The pathogenic bacterium that causes tuberculosis, Mycobacterium tuberculosis, does not multiply quickly, so researchers ...
Loading Comments...