MAR 15, 2016 1:45 PM PDT

Small, Non-Coding RNA Controls Obesity-Induced Changes in Adipose Tissue

WRITTEN BY: Kara Marker
Obesity and low-grade inflammation often go hand-in-hand with diabetes and heart disease. When lifestyle changes are not enough to reduce the risk of these diseases, scientists look elsewhere for a solution. In a new study published in Circulation Research, scientists from the Brigham and Women’s Hospital identified a small, non-coding RNA as playing a role in changes in adipose tissue.
 
Adipose tissue

The microRNA, called miR-181b, controls adipose tissue vessels, making it responsible for obesity-related changes in those areas. In their study of mice, miR-181b expression was associated with a decrease in adipose tissue in endothelial cells but not in adipocytes. These results were observed after one week of mice being fed a high-fat diet.
 
miR-181b also directly targets a protein phosphatase called PHLPP2. Levels of this protein were found to be higher in endothelial cells from diabetic patients than from non-diabetic patients. Therefore, inhibiting PHLPP2 and boosting miR-181b expression are on the “to-do” list of the researchers involved in this study.
 
miRNA Biogenesis

 
Scientists believe that they can rebuild the healthy levels of miR-181b of unhealthy people to decrease insulin resistance that causes and exacerbates diabetes. Initial successes are promising: scientists giving miR-181b injections saw improved insulin sensitivity, improved glucose levels, and reduced inflammation. The same results showed with PHLPP2 inhibition.
 
"The beneficial role of this microRNA in obesity is likely the tip of the iceberg since excessive inflammation is a pervasive finding in a wide-range of chronic inflammatory diseases,” said senior author Mark Feinberg, MD.
 
 
Source: Brigham and Women’s Hospital
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
JAN 14, 2020
Genetics & Genomics
JAN 14, 2020
Genetic Study Reveals Drug Targets for Several Diseases
Some genetic mutations are due to a change in only one base of the genetic code, while others involve large regions of the genome....
FEB 02, 2020
Genetics & Genomics
FEB 02, 2020
Ranking the Importance of Genes to Find Rare Disease-Causing Mutations
A team of scientists has classified genes according to how necessary they are for the survival of an organism....
FEB 05, 2020
Clinical & Molecular DX
FEB 05, 2020
A new CRISPR-based test for coronavirus infections
A surge in infections has caused panic surrounding the coronavirus (2019-nCoV) outbreak to reach a fever pitch. Despite being only moderately infective, 20...
FEB 03, 2020
Neuroscience
FEB 03, 2020
Genetic Characterization of Bipolar Disorders, Major Depressive Disorder
Mood disorders, like Bipolar, Major Depressive Disorder, and Schizophrenia, among others, are difficult to define clinically.  Unlike disorders that a...
FEB 14, 2020
Cancer
FEB 14, 2020
Cataloging Cancer: DNA fingerprints at work
New research published as part of a global Pan-Cancer Project highlights the world’s most comprehensive catalog to date of DNA fingerprints of cancer...
MAR 12, 2020
Clinical & Molecular DX
MAR 12, 2020
Molecular biomarker in saliva predicts childhood obesity
Epigenetic changes modify how genes are switched on and off, without altering DNA’s genetic code sequence. These epigenetic variations are reversible...
Loading Comments...