APR 07, 2016 09:00 PM PDT

600 smartphones of data can fit in this much DNA

All the baby pictures, financial transactions, funny cat videos, and email messages that we hoard often require technology companies to build sprawling data centers.

A new technique could shrink the space needed to store digital data that today would fill a Walmart supercenter down to the size of a sugar cube.

The team of computer scientists and electrical engineers has detailed one of the first complete systems to encode, store, and retrieve digital data using DNA molecules, which can store information millions of times more compactly than current archival technologies.
 
All the movies, images, emails, and other digital data from more than 600 basic smartphones (10,000 gigabytes) can be stored in the faint pink smear of DNA at the end of this test tube.

In one experiment outlined in a paper presented in April at the ACM International Conference on Architectural Support for Programming Languages and Operating Systems, the team successfully encoded digital data from four image files into the nucleotide sequences of synthetic DNA snippets.

More significantly, they were also able to reverse that process—retrieving the correct sequences from a larger pool of DNA and reconstructing the images without losing a single byte of information.

The team has also encoded and retrieved data that authenticates archival video files from the University of Wsahington’s Voices from the Rwanda Tribunal project that contain interviews with judges, lawyers, and other personnel from the Rwandan war crime tribunal.

“Life has produced this fantastic molecule called DNA that efficiently stores all kinds of information about your genes and how a living system works—it’s very, very compact and very durable,” says coauthor Luis Ceze, associate professor of computer science and engineering at the University of Washington.

“We’re essentially repurposing it to store digital data—pictures, videos, documents—in a manageable way for hundreds or thousands of years.”

The digital universe—all the data contained in our computer files, historic archives, movies, photo collections, and the exploding volume of digital information collected by businesses and devices worldwide—is expected to hit 44 trillion gigabytes by 2020.

That’s a tenfold increase compared to 2013, and will represent enough data to fill more than six stacks of computer tablets stretching to the moon. While not all of that information needs to be saved, the world is producing data faster than the capacity to store it.
 

DNA archives


DNA molecules can store information many millions of times more densely than existing technologies for digital storage—flash drives, hard drives, magnetic and optical media. Those systems also degrade after a few years or decades, while DNA can reliably preserve information for centuries. DNA is best suited for archival applications, rather than instances where files need to be accessed immediately.

The team from the university’s Molecular Information Systems Lab in close collaboration with Microsoft Research, is developing a DNA-based storage system that it expects could address the world’s needs for archival storage.

First, the researchers developed a novel approach to convert the long strings of ones and zeroes in digital data into the four basic building blocks of DNA sequences—adenine, guanine, cytosine, and thymine.

“How you go from ones and zeroes to As, Gs, Cs, and Ts really matters because if you use a smart approach, you can make it very dense and you don’t get a lot of errors,” says coauthor Georg Seelig, an associate professor of electrical engineering and of computer science and engineering. “If you do it wrong, you get a lot of mistakes.”

The digital data is chopped into pieces and stored by synthesizing a massive number of tiny DNA molecules, which can be dehydrated or otherwise preserved for long-term storage.
 

Random access


The University of Washington and Microsoft researchers are one of two teams nationwide that have also demonstrated the ability to perform “random access”—to identify and retrieve the correct sequences from this large pool of random DNA molecules, which is a task similar to reassembling one chapter of a story from a library of torn books.

To access the stored data later, the researchers also encode the equivalent of zip codes and street addresses into the DNA sequences. Using Polymerase Chain Reaction (PCR) techniques—commonly used in molecular biology—helps them more easily identify the zip codes they are looking for. Using DNA sequencing techniques, the researchers can then “read” the data and convert them back to a video, image, or document file by using the street addresses to reorder the data.

Currently, the largest barrier to viable DNA storage is the cost and efficiency with which DNA can be synthesized (or manufactured) and sequenced (or read) on a large scale. But researchers say there’s no technical barrier to achieving those gains if the right incentives are in place.

Advances in DNA storage rely on techniques pioneered by the biotechnology industry, but also incorporate new expertise. The team’s encoding approach, for instance, borrows from error correction schemes commonly used in computer memory—which hadn’t been applied to DNA.

“This is an example where we’re borrowing something from nature—DNA—to store information. But we’re using something we know from computers—how to correct memory errors—and applying that back to nature,” says Ceze.

Microsoft Research, the National Science Foundation, and the David Notkin Endowed Graduate Fellowship funded the work.

Source: University of Washington

This article was originally published on futurity.org.
About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
NOV 28, 2018
Cell & Molecular Biology
NOV 28, 2018
Microbes with an Expanded Genetic Code can Generate new Proteins with Special Properties
In recent years, scientists have created microbes that incorporate new nucleotide bases and new amino acids....
DEC 12, 2018
Videos
DEC 12, 2018
Why Don't We Clone Extinct or Endangered Animals?
While estimates about the number of species that go extinct vary widely, one thing is certain: we can list many animals that have gone extinct....
DEC 18, 2018
Genetics & Genomics
DEC 18, 2018
Hands Off! Plants Don't Like to be Touched
Some people have a green thumb, but that doesn't mean that plants enjoy feeling it....
DEC 20, 2018
Videos
DEC 20, 2018
A Genetic Test for Sociability in Dogs
It may be possible to swab a dog's cheek and do a genetic test to see if it would make a good service dog....
JAN 03, 2019
Immunology
JAN 03, 2019
Can the Immune System Restore Youth?
Researchers have identified a target gene that allows for premature aging and inflammation. Target drug therapy allows to the effects of aging to reverse in mice....
JAN 05, 2019
Videos
JAN 05, 2019
Photorespiration Shortcut Boosts Crop Yield
Most crops on earth don't photosynthesize efficiently; they sometimes use a wasteful cellular pathway called photorespiration....
Loading Comments...