FEB 11, 2015 12:00 AM PST

New Software Expedites Population-Scale Genomic Analysis: Dramatically cuts time needed to scour patient

WRITTEN BY: Judy O'Rourke
Researchers have created a hyper-fast, super-scalable software that shortens from weeks to mere hours the time needed to scrutinize a patient's genome for disease-causing variations.

The software is discussed in a recently published article.

"It took around 13 years and $3 billion to sequence the first human genome," says Peter White, PhD, principal investigator, Center for Microbial Pathogenesis, and director, Biomedical Genomics Core, Nationwide Children's, Columbus, Ohio, and the study's senior author. "Now, even the smallest research groups can complete genomic sequencing in a matter of days. However, once you've generated all that data, that's the point where many groups hit a wall. After a genome is sequenced, scientists are left with billions of data points to analyze before any truly useful information can be gleaned for use in research and clinical settings."

To help digest the mountain of data, White and team devised Churchill, a computational pipeline. With Churchill, scientists can deftly analyze a whole genome sample in just 90 minutes.

"Churchill fully automates the analytical process required to take raw sequence data through a series of complex and computationally intensive processes, ultimately producing a list of genetic variants ready for clinical interpretation and tertiary analysis," White says. "Each step in the process was optimized to significantly reduce analysis time, without sacrificing data integrity, resulting in an analysis method that is 100 percent reproducible."

Churchill's output has been validated with National Institute of Standards and Technology (NIST) benchmarks. White and his colleagues found its use for population-scale genomic analysis as a byproduct of its primary function. "At Nationwide Children's we have a strategic goal to introduce genomic medicine into multiple domains of pediatric research and healthcare," he says. "Rapid diagnosis of monogenic disease can be critical in newborns, so our initial focus was to create an analysis pipeline that was extremely fast, but didn't sacrifice clinical diagnostic standards of reproducibility and accuracy." Churchill is very efficient (greater than 90 percent resource utilization) and scaled adroitly across many servers.

The Churchill algorithm is licensed to GenomeNext LLC, Columbus, Ohio, a genomic informatics company, for which White is the principal genomic scientist and technical advisor.

The article, in the journal Genome Biology and titled "Churchill: an ultra-fast, deterministic, highly scalable and balanced parallelization strategy for the discovery of human genetic variation in clinical and population-scale genomics," is found here: bit.ly/1DapezP

Image: Cell nucleus and chromosomes stained by Spectral karyotyping (SKY) which is a laboratory technique that allows scientists to visualize all of the human chromosomes at one time by "painting" each pair of chromosomes in a different fluorescent color. [Photo credit: Division of Intramural Research, National Human Genome Research, NIH, Bethesda, MD]
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
JAN 24, 2020
Genetics & Genomics
JAN 24, 2020
As Sperm Mature, They Scan Their DNA and Repair Errors They FInd
Researchers have learned that when sperm cells mature, they activate many of their genes, which enables a repair process to take place....
JAN 28, 2020
Genetics & Genomics
JAN 28, 2020
Developing a Gene Therapy to Treat Duchenne Muscular Dystrophy
Because of a genetic mutation, people that have Duchenne muscular dystrophy lack functional copies of a protein called dystrophin....
FEB 02, 2020
Cancer
FEB 02, 2020
These cosmetics damage breast cells' DNA
A new approach to studying the effects of two common chemicals used in cosmetics and sunscreens found they can cause DNA damage in breast cells at surprisi...
FEB 03, 2020
Microbiology
FEB 03, 2020
The Switch Controlling the Stage of a Common Parasite
The parasite Toxoplasma gondii is thought to infect from one-quarter to one-third of the global population....
FEB 14, 2020
Cancer
FEB 14, 2020
Cataloging Cancer: DNA fingerprints at work
New research published as part of a global Pan-Cancer Project highlights the world’s most comprehensive catalog to date of DNA fingerprints of cancer...
FEB 24, 2020
Genetics & Genomics
FEB 24, 2020
Circular RNAs May Play a Role in Psychiatric Disorders
The genome contains the sequences for many genes that code for proteins. There are also regions and chemical tags that help control the activation of genes....
Loading Comments...