FEB 27, 2015 3:23 PM PST

Epigenome Choreographs Embryo's Development

WRITTEN BY: Judy O'Rourke
As an embryo is developing early on, cells and tissues for the person it will become are being formed for all time. These cells are molded into heart cells, skin cells, brain cells, and so on. Researchers are discovering that the epigenome is chiefly overseeing the works.

Epigenetic changes can help decide if genes are turned on or off. They can also affect the making of proteins in specific cells.
Studying zebrafish, scientists have shown that the epigenome plays a leading role in orchestrating development of early embryos.
Researchers examining zebrafish embryos have demonstrated the epigenome plays a key role in steering development in the first day after fertilization.

"Our study suggests that an underappreciated fraction of the genome is involved in gene regulation," says senior author Ting Wang, PhD, assistant professor of genetics, Washington University School of Medicine in St Louis. "Another surprising finding is that many of the important regions of DNA we identified are pretty far away from the genes they regulate.

"The field long has been focused on identifying genes that manufacture proteins," Wang adds. "We are showing that the epigenome is just as important and is an area that is largely uncharted."

To think of it in computer-friendly terms, if our DNA code is hard-wired into our cells, the epigenome would be the software that makes sense of it. The DNA hardware would remain constant in each cell, but the differences in the epigenome differentiate one cell type from another.

With zebrafish as a model of vertebrate development, the study covers new ground in mapping changes in the epigenome of whole embryos and the part they play in gene regulation in the first hours of development.

"The human genome, like the zebrafish genome, is epigenetically regulated," Wang says. "But in humans, for ethical reasons, we can only look at tissues in childhood and adulthood and describe differences between cell types. With zebrafish, we can watch the developmental process as it unfolds."

The researchers have demonstrated that numerous developmental problems that produce the loss of the embryo via miscarriage or in later disorders, cannot be tied to a specific gene.

"This study suggests that many diseases may have an epigenetic origin," Wang says. "Even if there is nothing wrong with the protein coding genes themselves, there are lots of different regulatory changes that could mess up gene expression and lead to disease."

Wang says the findings back the trend of scientists who are discovering further noncoding parts of the genome that have an integral function in gene regulation.

"I'm sure there are parts of the genome for which we may never find a function," he says. "But when we look deep, we can derive very complex regulatory relationships between noncoding regions and the distant genes they regulate."

The research, titled "Developmental enhancers revealed by extensive DNA methylome maps of zebrafish early embryos," is found in the journal Nature Communications.
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
MAY 12, 2021
Health & Medicine
Researchers Discover a New Genetic Disease that Prevents Antibody Formation
MAY 12, 2021
Researchers Discover a New Genetic Disease that Prevents Antibody Formation
Doctors at the Children's Hospital of Philadelphia discovered a new genetic disease that prevents B cell development.
MAY 25, 2021
Cell & Molecular Biology
A simplified high-throughput protein expression system
MAY 25, 2021
A simplified high-throughput protein expression system
Protein synthesis, protein engineering, and synthetic biology researchers can research their protein of interest using e ...
JUN 01, 2021
Genetics & Genomics
Sequencing and Identifying SARS-CoV-2 Variants Efficiently
JUN 01, 2021
Sequencing and Identifying SARS-CoV-2 Variants Efficiently
  Viral surveillance can give researchers vital information about virus origins, transmission routes, affected popu ...
JUN 02, 2021
Genetics & Genomics
A Genetic Form of ALS is Discovered
JUN 02, 2021
A Genetic Form of ALS is Discovered
Some medical mysteries have become much easier to solve because of advanced genetic techniques that have enabled researc ...
JUN 13, 2021
Genetics & Genomics
In a Major Twist, Human Cells Found Writing RNA Into DNA
JUN 13, 2021
In a Major Twist, Human Cells Found Writing RNA Into DNA
For many years, scientists have known about one of the most fundamental processes in biology, where cells use a DNA sequ ...
JUN 15, 2021
Cardiology
A Common Thread Among 20% of Sudden Cardiac Deaths
JUN 15, 2021
A Common Thread Among 20% of Sudden Cardiac Deaths
It's estimated that 450,000 Americans die from sudden heart conditions, and in about one in ten cases, the cause is unex ...
Loading Comments...