FEB 27, 2015 3:23 PM PST

Epigenome Choreographs Embryo's Development

WRITTEN BY: Judy O'Rourke
As an embryo is developing early on, cells and tissues for the person it will become are being formed for all time. These cells are molded into heart cells, skin cells, brain cells, and so on. Researchers are discovering that the epigenome is chiefly overseeing the works.

Epigenetic changes can help decide if genes are turned on or off. They can also affect the making of proteins in specific cells.
Studying zebrafish, scientists have shown that the epigenome plays a leading role in orchestrating development of early embryos.
Researchers examining zebrafish embryos have demonstrated the epigenome plays a key role in steering development in the first day after fertilization.

"Our study suggests that an underappreciated fraction of the genome is involved in gene regulation," says senior author Ting Wang, PhD, assistant professor of genetics, Washington University School of Medicine in St Louis. "Another surprising finding is that many of the important regions of DNA we identified are pretty far away from the genes they regulate.

"The field long has been focused on identifying genes that manufacture proteins," Wang adds. "We are showing that the epigenome is just as important and is an area that is largely uncharted."

To think of it in computer-friendly terms, if our DNA code is hard-wired into our cells, the epigenome would be the software that makes sense of it. The DNA hardware would remain constant in each cell, but the differences in the epigenome differentiate one cell type from another.

With zebrafish as a model of vertebrate development, the study covers new ground in mapping changes in the epigenome of whole embryos and the part they play in gene regulation in the first hours of development.

"The human genome, like the zebrafish genome, is epigenetically regulated," Wang says. "But in humans, for ethical reasons, we can only look at tissues in childhood and adulthood and describe differences between cell types. With zebrafish, we can watch the developmental process as it unfolds."

The researchers have demonstrated that numerous developmental problems that produce the loss of the embryo via miscarriage or in later disorders, cannot be tied to a specific gene.

"This study suggests that many diseases may have an epigenetic origin," Wang says. "Even if there is nothing wrong with the protein coding genes themselves, there are lots of different regulatory changes that could mess up gene expression and lead to disease."

Wang says the findings back the trend of scientists who are discovering further noncoding parts of the genome that have an integral function in gene regulation.

"I'm sure there are parts of the genome for which we may never find a function," he says. "But when we look deep, we can derive very complex regulatory relationships between noncoding regions and the distant genes they regulate."

The research, titled "Developmental enhancers revealed by extensive DNA methylome maps of zebrafish early embryos," is found in the journal Nature Communications.
About the Author
  • Judy O'Rourke worked as a newspaper reporter before becoming chief editor of Clinical Lab Products magazine. As a freelance writer today, she is interested in finding the story behind the latest developments in medicine and science, and in learning what lies ahead.
You May Also Like
DEC 11, 2019
Genetics & Genomics
DEC 11, 2019
The Cause of a New Autoimmune Disease is Discovered
Researchers have discovered a new autoinflammatory disease, which they have called CRIA (cleavage-resistant RIPK1-induced autoinflammatory) syndrome....
JAN 26, 2020
JAN 26, 2020
The Planet's Soil is Home to Microbe-Eating Protists
Protists don't fit neatly into any other category of organism; they are eukaryotes, but they are not a plant, fungi or animal....
JAN 30, 2020
Genetics & Genomics
JAN 30, 2020
How To Choose The Right DNA Testing Kit For You
One of the most exciting scientific advancements in the past decade, at least in terms of its impact on pop culture, was the sudden accessibility of home D...
FEB 02, 2020
Genetics & Genomics
FEB 02, 2020
Ranking the Importance of Genes to Find Rare Disease-Causing Mutations
A team of scientists has classified genes according to how necessary they are for the survival of an organism....
FEB 05, 2020
Clinical & Molecular DX
FEB 05, 2020
A new CRISPR-based test for coronavirus infections
A surge in infections has caused panic surrounding the coronavirus (2019-nCoV) outbreak to reach a fever pitch. Despite being only moderately infective, 20...
FEB 11, 2020
FEB 11, 2020
Soybean oil Causes Genetic Changes in Mouse Brain
Source: Hypothalmus and limic system   Soybean oil is used for cooking fast food, in packaged products, and to feed livestock, making it the most wide...
Loading Comments...