SEP 13, 2016 12:19 PM PDT

How can understanding epigenetic tags be used to treat cancer?

WRITTEN BY: Kara Marker
Errors in DNA methylation are often found to be causative in different types of cancer, but scientists still do not know what molecular mishaps are at the root of the problem. In a new study from the Van Andel Research Institute, the inheritance of methyl tags among generations of dividing cells might hold the answer.
“What we didn’t realize before this study is that [key players orchestrating DNA methylation] all work together in an elegant way,” said senior author Scott Rothbart, PhD.

Rothbart and the team from the Van Andel Research Institute are focused on the potential to develop new drug therapies for cancer and other pathologies that result from errors in DNA methylation. In their current study, a collaboration with UNC Chapel Hill, University of Washington, University of Toronto, they zero in on the role of a specific protein: UHRF1. 

UHRF1 protein is able to recognize the inheritance pattern of methyl tags as dividing cells pass epigenetic information on to their daughter cells. In addition, UHRF1 promotes the addition of new methyl tags, which communicate the activation or inactivation of certain genes, ultimately deciding how a cell functions.

During their study of UHRF1 and its function during cell division and DNA methylation, the researchers found that the protein recognizes newly-copied DNA sites due to a lack of methylation. UHRF1 then simultaneously calls on a protein called histone H3 and attaches a small ubiquitin protein to it. 

The ubiquitination of histone H3 then signals to DNA methylation enzymes to add a methyl tag to the newly-copied DNA site. The entire signaling process is apparently controlled by a “pre-existing pattern of epigenetic signals,” all recognized by UHRF1. 

"This exquisite regulation of an ubiquitin ligase has not been previously described and is very exciting for the field of ubiquitin biology,” said Joe Harrison, PhD, from UNC Chapel Hill.

In the future, the team plans on developing different screening methods to identify compounds capable of correcting errors that occur in the process of DNA methylation, which have been linked to tumor formation in multiple types of cancer.

The study was recently published in the journal eLife

Source: Van Andel Research Institute
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog:
You May Also Like
SEP 04, 2018
Drug Discovery
SEP 04, 2018
Treating Symptoms of Huntington Disease
According to a new study published in the Proceedings of the National Academy of Sciences (PNAS), a genetic disorder known as Huntington's disease may ...
SEP 18, 2018
SEP 18, 2018
The Earliest Influences on the Microbiome Have a Lasting Impact
We coexist with microorganisms, and many of them play an important role in our health....
SEP 19, 2018
Genetics & Genomics
SEP 19, 2018
Forensic Efforts To Combat Ivory Poaching
Scientists are using DNA testing to identify poaching hotspots, and criminal networks....
OCT 02, 2018
Health & Medicine
OCT 02, 2018
Many Patients Are Unaware of Increased Cancer Risk
Just as recently as a few decades ago, many common health screenings were not readily available. Mammography, for breast cancer detection, wasn't ...
NOV 20, 2018
NOV 20, 2018
Mutations Mutations Which Ones Do We Want?
A team at UCSF makes use of new SLICE tool to generate mutations that reveal specific genetic functions....
NOV 20, 2018
NOV 20, 2018
Survival of the SCID Patient
A team of scientists reviewed over 600 SCID patients medical records to establish the relationship between genetics and survival rates....
Loading Comments...