MAR 11, 2015 4:35 PM PDT

Blood-based Genetic Biomarkers Identify Young Boys with Autism

WRITTEN BY: Ilene Schneider
In a study published in the current online issue of JAMA Psychiatry, an international team of scientists, led by researchers at the University of California, San Diego School of Medicine, report finding a highly accurate blood-based measure that could lead to development of a clinical test for autism spectrum disorder (ASD) risk in males as young as one to two years old. The test could be done in community pediatric settings. The degree of accuracy, they said, out performs other behavioral and genetic screens for infants and toddlers with ASD described in literature.

The causes of ASD are complex and diverse, making it difficult to conclusively diagnose the disease much before a child's fourth year of life. Indeed, the median age of diagnosis in the United States is 53 months.

"A major challenge is the difficulty of accurately diagnosing ASD, which is very heterogeneous, at an early enough age to implement the most effective treatment," said principal investigator Eric Courchesne, PhD, professor of neurosciences and director of the Autism Center of Excellence at University of California, San Diego School of Medicine.

In the proof-of-principle study, Courchesne, first author Tiziano Pramparo, PhD, and colleagues identified blood-based genomic biomarkers that differentiated toddlers with ASD, ranging in age from one to four years old, from a control group of toddlers without ASD. Blood samples were taken at the child's initial clinical intake. Importantly, the control group consisted of a mix of young boys commonly seen in community clinics, with typical development, mild language delay, transient language delay and global developmental delay. Against this control group, the researchers identified a genetic signature that identified 83 percent of ASD toddlers.

The study used an unbiased systems biology-based method to search for genes and gene pathways in blood samples that best distinguished ASD infants and toddlers from typically developing toddlers and toddlers with non-autism developmental delays. Specifically, the researchers measured leukocyte (white blood cell) RNA expression levels.

"Ideally, biomarkers come from tissue affected, but in ASD this is the brain, which is obviously an inaccessible tissue," said Courchesne. "Peripheral blood of living ASD infants and toddlers is an important alternative, and obtaining blood samples is routine and safe and, thus, is a preferable and accessible tissue for identifying signatures of ASD that could be used in clinical screening and follow-up evaluations."

Pramparo, an associate research scientist at the UC San Diego Autism Center of Excellence, said blood is expected to carry autism-relevant molecular signatures that can be used to detect the disorder at very young ages. It might also reflect aspects of the disrupted biology underlying neural defects.

In fact, the researchers found gene expression differences between ASD and non-ASD in genes related to translation and immune/inflammation functions, as well as cell adhesion and cell cycle. These "ASD signature classifier" genes are among those that can have effect on early brain development.

"New studies point to autism beginning in the womb," said Courchesne, who, with colleagues, published one such widely reported study last year detailing disrupted brain development in post-mortem brains of autistic children. "Our present study shows examination of the gene expression profiles at the very early age of initial clinical detection reveals both strong evidence of early biological processes in ASD and abnormal signals with the potential to serve as an early, practical biomarker of risk for the disorder in general pediatric settings."

The scientific team conducted two different analyses of blood samples involving two cohorts of study participants: 147 toddlers (91 with ASD, 56 control) in the first group, 73 toddlers (44 ASD, 29 control) in the second group. The first assay identified an ASD genomic signature 83 percent of the time; the second had a 75 percent accuracy rate.

Young male toddlers with autism were the focus of the study because autism is far more prevalent in males. "The genetics and molecular bases of autism may differ somewhat in affected males and females," said Pramparo. "We reasoned, therefore, that different signatures might need to be discovered and developed in each gender in ASD."

It was simpler to begin with boys. "Autism is four times more common in males," said Courchesne, "and so we were able to more quickly recruit and test samples of autism males than autism females. Our current work is aimed at recruiting sufficiently large samples of females to begin work to discover possible gene expression markers for them."

Courchesne emphasized that this was a first step toward a possible means of diagnosing autism much earlier than current methodologies, one that would greatly boost the efficacy of intervention and remedial treatments.

Though only proof-of-principle, Courchesne said the findings are encouraging. Next steps involve further refinement of the process and identification of diagnostic risk markers for females.

"As we write in the paper, our study showed that a blood-based clinical test for at-risk male infants and toddlers could be refined and routinely implemented in pediatric diagnostic settings."

Source: UC San Diego
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
OCT 15, 2020
Plants & Animals
Meet the World's First Cloned Przewalski's Horse
OCT 15, 2020
Meet the World's First Cloned Przewalski's Horse
Say “hello!” to Kurt, a two-month-old Przewalski’s horse that has made scientific history as the world ...
NOV 02, 2020
Genetics & Genomics
Denisovan DNA Recovered From the Tibetan Plateau
NOV 02, 2020
Denisovan DNA Recovered From the Tibetan Plateau
Denisovans were ancient hominins that were discovered only recently, and they had a wider range than previously known.
NOV 30, 2020
Cell & Molecular Biology
Can a Scent Motivate Us to Exercise?
NOV 30, 2020
Can a Scent Motivate Us to Exercise?
People are always looking for new ways to get inspired to exercise. Now odor is being proposed as a motivational tool fo ...
DEC 25, 2020
Genetics & Genomics
An Improved Reference Genome for Better Research
DEC 25, 2020
An Improved Reference Genome for Better Research
In scientific research, it's crucial to make comparisons. Therefore, reliable standards and controls are essential for d ...
DEC 29, 2020
Microbiology
How CRISPR Can Help Create a Vaccine for a Common Parasite
DEC 29, 2020
How CRISPR Can Help Create a Vaccine for a Common Parasite
The parasite Toxoplasma gondii is thought to infect a third of the people on the planet as well as a wide range of other ...
JAN 10, 2021
Microbiology
Some Bacteria Know the Time
JAN 10, 2021
Some Bacteria Know the Time
People, animals, and even plants are known to have biological clocks, and new work has revealed that free-living bacteri ...
Loading Comments...