MAR 18, 2015 9:48 PM PDT

Stem Cells Lurking in Tumors Can Resist Treatment

WRITTEN BY: Ilene Schneider
Scientists are eager to make use of stem cells' extraordinary power to transform into nearly any kind of cell, but that ability also is cause for concern in cancer treatment. Malignant tumors contain stem cells, prompting worries among medical experts that the cells' transformative powers help cancers escape treatment.

New research proves that the threat posed by cancer stem cells is more prevalent than previously thought. Until now, stem cells had been identified only in aggressive, fast-growing tumors. But a mouse study at Washington University School of Medicine in St. Louis shows that slow-growing tumors also have treatment-resistant stem cells.

The low-grade brain cancer stem cells identified by the scientists also were less sensitive to anticancer drugs. By comparing healthy stem cells with stem cells from these brain tumors, the researchers discovered the reasons behind treatment resistance, pointing to new therapeutic strategies.

"At the very least, we're going to have to use different drugs and different, likely higher dosages to make sure we kill these tumor stem cells," said senior author David H. Gutmann, MD, PhD, the Donald O. Schnuck Family Professor of Neurology.

The research appears online March 12 in Cell Reports.

First author Yi-Hsien Chen, PhD, a senior postdoctoral research associate in Gutmann's laboratory, used a mouse model of neurofibromatosis type 1 (NF1) low-grade brain tumors to identify cancer stem cells and demonstrate that they could form tumors when transplanted into normal, cancer-free mice.

NF1 is a genetic disorder that affects about 1 in every 2,500 babies. The condition can cause an array of problems, including brain tumors, impaired vision, learning disabilities, behavioral problems, heart defects and bone deformities.

The most common brain tumor in children with NF1 is the optic glioma. Treatment for NF1-related optic gliomas often includes drugs that inhibit a cell growth pathway originally identified by Gutmann. In laboratory tests conducted as part of the new research, it took 10 times the dosage of these drugs to kill the low-grade cancer stem cells.

Compared with healthy stem cells from the brain, the cancer stem cells made more copies of a protein called Abcg1 that helps those cells survive stress.

"This protein blocks a signal from inside the cells that should make them more vulnerable to treatment," Gutmann explained. "If we can identify a drug that disables this protein, it would make some cancer stem cells easier to kill."

Although the mice the researchers studied were bred to model NF1 optic gliomas, the researchers said the findings could be applied more broadly to other brain tumors.

"Because stem cells haven't differentiated into specialized cells, they can easily activate genes to turn on new developmental programs that allow the cells to survive cancer treatments," said Gutmann, who directs the Washington University Neurofibromatosis Center. "Based on these new findings, we will have to develop additional strategies to keep these tumors from evading our best treatments."

Source: Washington University in St. Louis
About the Author
  • Ilene Schneider is the owner of Schneider the Writer, a firm that provides communications for health care, high technology and service enterprises. Her specialties include public relations, media relations, advertising, journalistic writing, editing, grant writing and corporate creativity consulting services. Prior to starting her own business in 1985, Ilene was editor of the Cleveland edition of TV Guide, associate editor of School Product News (Penton Publishing) and senior public relations representative at Beckman Instruments, Inc. She was profiled in a book, How to Open and Operate a Home-Based Writing Business and listed in Who's Who of American Women, Who's Who in Advertising and Who's Who in Media and Communications. She was the recipient of the Women in Communications, Inc. Clarion Award in advertising. A graduate of the University of Pennsylvania, Ilene and her family have lived in Irvine, California, since 1978.
You May Also Like
AUG 27, 2020
Genetics & Genomics
Understanding How Animals Make Seasonal Adaptations
AUG 27, 2020
Understanding How Animals Make Seasonal Adaptations
Some animals don't need a new wardrobe to change with the seasons, and scientists have now learned more about how they d ...
OCT 19, 2020
Clinical & Molecular DX
Making Capillary Electrophoresis Accessible for Any Lab
OCT 19, 2020
Making Capillary Electrophoresis Accessible for Any Lab
Analyzing nucleic acids through gel electrophoresis has been a staple of genetic research for decades. But using traditi ...
OCT 03, 2020
Genetics & Genomics
Genetic Changes Can Influence Cocaine Addiction
OCT 03, 2020
Genetic Changes Can Influence Cocaine Addiction
There is no treatment for cocaine addiction, which affects millions of people around the world and has a high relapse ra ...
OCT 04, 2020
Cardiology
The Genetics of Body Fat May Shape Health Risks
OCT 04, 2020
The Genetics of Body Fat May Shape Health Risks
The work may help explain why men and women are at risk for different diseases and often respond to different treatments ...
OCT 05, 2020
Genetics & Genomics
A Rare Form of Dementia is Discovered
OCT 05, 2020
A Rare Form of Dementia is Discovered
There are different types of dementia, a term for a loss of cognitive function, including Alzheimer's disease and Le ...
NOV 20, 2020
Genetics & Genomics
How a Genetic Mutation Can be Good for Carriers
NOV 20, 2020
How a Genetic Mutation Can be Good for Carriers
Genetic mutations are usually connected to disease, but there are some that are known to improve people's lives.
Loading Comments...