JAN 29, 2018 3:35 PM PST

Evolution may Have Been Helped Along by Mobile DNA

WRITTEN BY: Carmen Leitch

Organisms that live on the edges of existence, extremophiles, provide some insight into evolution and metabolism, and maybe even extraterrestrial life. On planet Earth, they inhabit some of the most extreme places, like thermal vents or volcanoes. New work has shown how a heat-loving microbe that eats ammonia may have evolved from a microorganism that inhabits hot springs to one that can live anywhere on the globe. Reporting in Frontiers in Microbiology, the investigators determined that pieces of DNA that can migrate, highly mobile genetic elements, may have helped the process.

Extreme environments, like hot springs, may have given birth to the first life forms. / Image credit: Pixabay

One branch of extremophile microbes has successfully colonized most places, but scientists have not known why. The most extreme microorganisms are on the archaea branch of life; they are single-celled and ancient, occupying a space between bacteria and eukaryotes. Archaea can be found in hot springs, salt lakes, freezing deserts, and deep-sea trenches.

"Thaumarchaeota are found in very large numbers in virtually all environments, including the oceans, soils, plant leaves and the human skin," said study leader Professor Christa Schleper from the University of Vienna, Austria. "We want to know what their secret is: billions of years ago, how did they adapt from hot springs, where it seems all archaea evolved, to more moderate habitats?"

To pursue that question, the team harvested a Thaumarchaeota species from an Italian hot spring. They assessed its genome, which is the first-ever analysis of a Thaumarchaeota of the Nitroscaldus lineage. They all oxidize ammonia into nitrite for energy. The scientists found that it was closely related to the last common ancestor of Thaumarchaeota. It appears to have exchanged DNA with other organisms often, and not only archaea but possibly other bacteria as well. The microbe, Candidatus Nitrosocaldus cavascurensis, has highly mobile genetic elements.
 
That feature may have enabled archaea to migrate away from hot springs. "This organism seems prone to lateral gene transfer and invasion by foreign DNA elements," noted Professor Schleper. "Such mechanisms may have also helped the ancestral lines of Thaumarchaeota to evolve and eventually radiate into moderate environments -- and N. cavascurensis may still be evolving through genetic exchange with neighboring organisms in its hot spring."

It has been suggested that the first forms of life on our planet evolved in hot springs, as discussed in the video. Additional studies of thermophiles may reveal mechanisms that underlie the evolution of the first cells, which went on to conquer the globe.


Sources: AAAS/Eurekalert! Via Frontiers, Frontiers in Microbiology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 24, 2020
Genetics & Genomics
Using Wastewater to Identify COVID-19 Hotspots
APR 24, 2020
Using Wastewater to Identify COVID-19 Hotspots
The SARS-CoV-2 pandemic is now known to have infected over 2.7 million individuals and killed at least 194,000.
MAY 17, 2020
Genetics & Genomics
How Non-Coding Genomic Regions Influence Autoimmune Disease
MAY 17, 2020
How Non-Coding Genomic Regions Influence Autoimmune Disease
Scientists have gained new insight into autoimmune and allergic disorders.
JUN 01, 2020
Genetics & Genomics
Vaping Increases Oral Disease Risk After Only a Few Months
JUN 01, 2020
Vaping Increases Oral Disease Risk After Only a Few Months
E-cigarettes have emerged as a healthier alternative to smoking, but many studies have suggested that vaping still poses ...
JUN 15, 2020
Genetics & Genomics
Genetic Variant Study Links Brain Cells to Multiple Sclerosis
JUN 15, 2020
Genetic Variant Study Links Brain Cells to Multiple Sclerosis
Multiple sclerosis (MS) is an autoimmune disorder, in which the immune system attacks an insulating sheath that coats ne ...
JUL 21, 2020
Genetics & Genomics
In a First, DNA Quadruple Helix Observed in Live Human Cells
JUL 21, 2020
In a First, DNA Quadruple Helix Observed in Live Human Cells
If you've seen a representation of a DNA molecule, you've seen the double helix, in which two strands of genetic materia ...
JUL 30, 2020
Genetics & Genomics
How Are DNA Testing Companies Helping the Fight Against COVID?
JUL 30, 2020
How Are DNA Testing Companies Helping the Fight Against COVID?
One of the most puzzling characteristics of coronavirus is how some people develop severe symptoms and die from the dise ...
Loading Comments...