JAN 29, 2018 3:35 PM PST

Evolution may Have Been Helped Along by Mobile DNA

WRITTEN BY: Carmen Leitch

Organisms that live on the edges of existence, extremophiles, provide some insight into evolution and metabolism, and maybe even extraterrestrial life. On planet Earth, they inhabit some of the most extreme places, like thermal vents or volcanoes. New work has shown how a heat-loving microbe that eats ammonia may have evolved from a microorganism that inhabits hot springs to one that can live anywhere on the globe. Reporting in Frontiers in Microbiology, the investigators determined that pieces of DNA that can migrate, highly mobile genetic elements, may have helped the process.

Extreme environments, like hot springs, may have given birth to the first life forms. / Image credit: Pixabay

One branch of extremophile microbes has successfully colonized most places, but scientists have not known why. The most extreme microorganisms are on the archaea branch of life; they are single-celled and ancient, occupying a space between bacteria and eukaryotes. Archaea can be found in hot springs, salt lakes, freezing deserts, and deep-sea trenches.

"Thaumarchaeota are found in very large numbers in virtually all environments, including the oceans, soils, plant leaves and the human skin," said study leader Professor Christa Schleper from the University of Vienna, Austria. "We want to know what their secret is: billions of years ago, how did they adapt from hot springs, where it seems all archaea evolved, to more moderate habitats?"

To pursue that question, the team harvested a Thaumarchaeota species from an Italian hot spring. They assessed its genome, which is the first-ever analysis of a Thaumarchaeota of the Nitroscaldus lineage. They all oxidize ammonia into nitrite for energy. The scientists found that it was closely related to the last common ancestor of Thaumarchaeota. It appears to have exchanged DNA with other organisms often, and not only archaea but possibly other bacteria as well. The microbe, Candidatus Nitrosocaldus cavascurensis, has highly mobile genetic elements.
 
That feature may have enabled archaea to migrate away from hot springs. "This organism seems prone to lateral gene transfer and invasion by foreign DNA elements," noted Professor Schleper. "Such mechanisms may have also helped the ancestral lines of Thaumarchaeota to evolve and eventually radiate into moderate environments -- and N. cavascurensis may still be evolving through genetic exchange with neighboring organisms in its hot spring."

It has been suggested that the first forms of life on our planet evolved in hot springs, as discussed in the video. Additional studies of thermophiles may reveal mechanisms that underlie the evolution of the first cells, which went on to conquer the globe.


Sources: AAAS/Eurekalert! Via Frontiers, Frontiers in Microbiology

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 27, 2021
Genetics & Genomics
A Genetic Path Forward For Endangered Sumatran Rhinos
APR 27, 2021
A Genetic Path Forward For Endangered Sumatran Rhinos
There are fewer than 100 Sumatran rhinoceroses remaining in the world, making this animal one of the world's most endang ...
MAY 09, 2021
Genetics & Genomics
Another Neurodevelopmental Disorder is Discovered
MAY 09, 2021
Another Neurodevelopmental Disorder is Discovered
Researchers are identifying more rare disorders because of advances in genetic sequencing technologies, which have made ...
MAY 12, 2021
Health & Medicine
Researchers Discover a New Genetic Disease that Prevents Antibody Formation
MAY 12, 2021
Researchers Discover a New Genetic Disease that Prevents Antibody Formation
Doctors at the Children's Hospital of Philadelphia discovered a new genetic disease that prevents B cell development.
JUN 13, 2021
Cell & Molecular Biology
The DNA Content of a Cell Helps Control Its Size
JUN 13, 2021
The DNA Content of a Cell Helps Control Its Size
Cells have to maintain the right size; bacterial and eukaryotic cells tend to have a characteristic size, but that may a ...
JUL 21, 2021
Genetics & Genomics
Researchers Detect DNA in Air Samples
JUL 21, 2021
Researchers Detect DNA in Air Samples
Scientists have shown that it's possible to assess what organisms might be living in a particular habitat by collecting ...
JUL 28, 2021
Microbiology
Histones May Be Essential to Amoeba-Infecting Viruses
JUL 28, 2021
Histones May Be Essential to Amoeba-Infecting Viruses
Histones are proteins that are used to organize and compact DNA. Some giant viruses called Marseilleviridae have also be ...
Loading Comments...