FEB 21, 2018 6:00 PM PST

Clues to Immortality From the Fruit Fly Genome

WRITTEN BY: Carmen Leitch

The secrets to immortality may lie in an unexpected place - fruit fly stem cells. Researchers led by Howard Hughes Medical Institute (HHMI) Investigator Yukiko Yamashita have found that some stem cells have a genetic trick to remain young forever across generations. While some areas of the fruit fly genome get shorter as they age, some reproductive cells are able to fix that shortening. Once observed only in yeast, this work, reported in eLife, has revealed more about aging, and how some cells can avoid it.

This work focused on critical genes in ribosomal DNA, rDNA. Ribosomes are cellular organelles that act as protein factories. That rDNA is repeated in several areas of the genome because many ribosomes are needed to make all of the proteins the body needs. Five chromosomes each have spots with hundreds of copies of rDNA. However, that type of redundant sequence can be difficult for cells to replicate accurately every time cell division happens.

"The end result is that some copies are lost every cycle," Yamashita explained. "They are popping out of the chromosome."

This loss has been seen in single-celled yeast, but until now nothing has been known about the role of rDNA in aging in multicellular organisms. Yamashita and her team assessed rDNA genes found in the stem cells of fruit fly testes. Those are called germline stem cells and can divide continuously to make a sperm cell as well as a copy of themselves each time.

Fruit flies carry rDNA hotspots on X and Y chromosomes. Old males were found to have fewer rDNA genes on their Y chromosome compared to young males. It was determined that the shrunken Y chromosome can also be passed on to the next generation. Elderly fruit fly fathers were found to pass down fewer rDNA genes to their sons. Yamashita and colleagues saw that sons born to old fathers had significantly fewer rDNA copies than sons of young fathers.

The fruit fly has been used extensively genetics research. / Image credit: Wikimedia Commons/Sanjay Acharya

However, something surprising was seen after following up on those sons. Many of them recovered the loss of rDNA. "This recovery was something we really didn't expect," Yamashita said. 

It may be that stem cells and rDNA rejuvenation are connected. The researchers have yet to examine this phenomenon in females, or if similar mechanisms are seen in humans.

Yamashita suggested that these types of processes may indeed be at work in some kinds of human cells, like stem cells or cancer cells. "Of course, we are not flies," she noted, but she thought it likely that some immortal cells carried by people can perform the same rejuvenation technique to stop the decline of rDNA.

Sources: AAAS/Eurekalert! Via HHMI, eLife

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUN 10, 2021
Cell & Molecular Biology
Does Lithium Prevent Colon Cancer?
JUN 10, 2021
Does Lithium Prevent Colon Cancer?
Researchers found that a drug used in the treatment of mental illness can promote the fitness of healthy gut stem cells, ...
JUN 13, 2021
Genetics & Genomics
In a Major Twist, Human Cells Found Writing RNA Into DNA
JUN 13, 2021
In a Major Twist, Human Cells Found Writing RNA Into DNA
For many years, scientists have known about one of the most fundamental processes in biology, where cells use a DNA sequ ...
JUN 23, 2021
Genetics & Genomics
Expansive RNA Atlas Includes Coding & Non-Coding Molecules
JUN 23, 2021
Expansive RNA Atlas Includes Coding & Non-Coding Molecules
We'e sequenced the human genome, even the parts that are highly repetitive, don't code for protein, and are extremely ch ...
JUL 04, 2021
Genetics & Genomics
New Insights Into the Mechanisms of Rett Syndrome
JUL 04, 2021
New Insights Into the Mechanisms of Rett Syndrome
Rett syndrome is a neurological disorder that mostly affects girls; affected individuals develop normally until they're ...
JUL 29, 2021
Genetics & Genomics
Can Cats Help Us Learn More About Genomic Dark Matter?
JUL 29, 2021
Can Cats Help Us Learn More About Genomic Dark Matter?
Cats have been a part of human society for thousands of years, and now scientists are suggesting that they could help pr ...
AUG 01, 2021
Genetics & Genomics
Rethinking the Cause of Mutations That Lead to Melanoma
AUG 01, 2021
Rethinking the Cause of Mutations That Lead to Melanoma
Throughout our lives, new cells often replace the ones that become damaged or worn out. As cells divide, they have to re ...
Loading Comments...