MAR 09, 2018 10:53 AM PST

Identifying Genes Linked to an Aging Brain

WRITTEN BY: Carmen Leitch

As we get older, our body has to replace old cells with new ones. But in the brain, that process slows down as we age. Researchers have identified changes in about 250 genes that go along with the reduction in stem cell activity as they replenish cells in the brain. When the activity of one gene, Dbx2, was raised by the researchers, young stem cells began to behave like old ones, aging prematurely and growing more slowly. The work has been reported in Aging Cell.

Researchers want to understand how genes in the brain change as we age. / Image credit: Max Pixel

Researchers at the Babraham Institute, Cambridge and Sapienza University in Rome looked at genes that were active in the brain cells of old mice and compared it to that in young mice. The study, jointly led by Giuseppe Lupo and Emanuele Cacci in Italy and Peter Rugg-Gunn in the UK, found that some genes were turned on while others shut off as aging progressed.

"Aging ultimately affects all of us, and the societal and healthcare burden of neurodegenerative diseases is enormous. By understanding how aging affects the brain, at least in mice, we hope to identify ways to spot neural stem cell decline," said co-lead scientist Dr. Peter Rugg-Gunn. "Eventually, we may find ways to slow or even reverse brain deterioration - potentially by resetting the epigenetic switches - helping more of us to stay mentally agile for longer into old age."

After assessing gene activity, they tested one of the main findings. A gene with altered activity, Dbx2, was manipulated in young brain stem cells. The scientists made those young stem cells grow new brain cells more slowly by increasing Dbx2 activity. While the cells were not exactly like old stem cells, there were notable similarities. That suggests that the other genes identified in the study could also be very important to brain aging. 

These are stem cells from the brain. Cells were labelled using a stain that detects a protein called nestin, found in neural stem cells. / Credit: Dr. Giuseppe Lupo

In addition to changes in genes in older stem cells, the scientists uncovered alterations to several epigenetic marks, which are chemical tags added to genes that modify them in various ways. These may also influence the deterioration of brain cells with age.

"The genes and gene regulators that we identified are corrupted in neural stem cells from older mice," revealed first author Dr. Giuseppe Lupo, Assistant Professor at Sapienza University. "By studying the Dbx2 gene, we have shown that these changes may contribute to aging in the brain by slowing the growth of brain stem cells and by switching on the activity of other age-associated genes."

"We hope this research will lead to benefits for human health. We have succeeded in accelerating parts of the aging process in neural stem cells. By studying these genes more closely, we now plan to try turning back the clock for older cells. If we can do this in mice, then the same thing could also be possible for humans," concluded co-lead scientist Dr. Emanuele Cacci at Sapienza University.

Dr. Rugg-Gunn discusses how epigenetics impacts our physiology in the video. 


Sources: AAAS/Eurkealert! Via Babraham Institute, Aging Cell

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 22, 2022
Immunology
A Lifetime of Mutations is Seen in Aging Immune Cells
AUG 22, 2022
A Lifetime of Mutations is Seen in Aging Immune Cells
Researchers have used advanced sequencing techniques to analyze immune cells in great detail. This work has shown that o ...
SEP 22, 2022
Cell & Molecular Biology
Human Protein Crucial to Infection & Disease is Discovered
SEP 22, 2022
Human Protein Crucial to Infection & Disease is Discovered
The pandemic virus SARS-CoV-2 caused many scientists to begin studying infectious disease, in search of ways to stop the ...
OCT 18, 2022
Genetics & Genomics
Mitochondrial DNA Can Move to the Genome to Trigger Human Evolution
OCT 18, 2022
Mitochondrial DNA Can Move to the Genome to Trigger Human Evolution
Mitochondria are often called the powerhouse of the cell, and these organelles are well-known for their energy-generatin ...
OCT 17, 2022
Clinical & Molecular DX
New Study Shows Biological Differences in the Second-Most Common Type of Breast Cancer
OCT 17, 2022
New Study Shows Biological Differences in the Second-Most Common Type of Breast Cancer
Though invasive lobular carcinoma (ILC) is the second-most common type of breast cancer, it has historically been resear ...
NOV 09, 2022
Genetics & Genomics
What happened to the Neandertals?
NOV 09, 2022
What happened to the Neandertals?
New research suggests that interbreeding, not violence, may have caused the Neandertal extinction.
NOV 15, 2022
Genetics & Genomics
Revealing the Mutations that Make Melanoma Immortal
NOV 15, 2022
Revealing the Mutations that Make Melanoma Immortal
Telomeres cap the ends of chromosomes, preventing breakage. Some cancer cells can use those protective caps to their adv ...
Loading Comments...