MAY 29, 2018 6:45 PM PDT

A Pair of Genomes is Best

WRITTEN BY: Carmen Leitch

People carry two sets of each chromosome, so our cells carry a pair of genomes; we are diploid. Researchers have now learned more about why a cell is destabilized by the presence of more or less than chromosome pairs. This work will help scientists understand the instability of chromosomes in cancer cells, which carry chromosomes with structural abnormalities, and irregular numbers of chromosomes. The study was reported in the Journal of Cell Biology.

A diploid cell (left) and a haploid cell (right) showing normal and abnormal orientation of chromosomes (purple) and microtubules (green) during cell division, respectively. / Credit/Copyright: Yaguchi K., et al., Journal of Cell Biology, April 30, 2018

Most mammals have diploid cells with pairs of chromosomes. When cells are in a non-diploid state, the cell can become dysfunctional and unstable; it can cause abnormalities and disease, including cancer. An exception is cells that are involved in sexual reproduction; egg and sperm cells carry only one copy of the genome; they are haploid. Another exception is cancer, which can exist in the haploid or tetraploid state, in which they have four sets of chromosomes. When cells are not diploid, they are unstable, but it was not known why.

For this work, the researchers used cells lines that were haploid, diploid, or tetraploid to look at how each cell type behaved as division occurred. Two centrosomes are important players in cell division, regulating the process. They orchestrate microtubules, which separate chromosomes.  

A gradual loss of centrosomes and microtubules was observed in haploid cells, while in tetraploid cells, centrosomes were often duplicated too much, and there were too many microtubules. That seriously disrupted cell replication. It’s known that aberrant levels of microtubules can impact centrosome duplication, and can result in the loss or gain of centrosomes. DNA replication remained constant regardless of the ploidy state of the cell.  

"Incompatibility between centrosome duplication and the DNA replication cycle could be the underlying cause of the instability in non-diploid cells in mammals," noted senior author Ryota Uehara of Hokkaido University. "Our findings could help understand chromosome instability in cancer cells, which are often in a non-diploid state, and lead to new cancer treatment strategies."

Learn more about diploid and haploid cells from the video above by Bozeman Science.

Sources: AAAS/Eurekalert! Via Hokkaido University, Chromosomal Research, Journal of Cell Biology

About the Author
BS
Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 02, 2022
Genetics & Genomics
The Genetic Factors Underlying the Power of Language
SEP 02, 2022
The Genetic Factors Underlying the Power of Language
What sets humans apart from other animals? One primary difference is language; reading, writing, and speaking enable us ...
SEP 14, 2022
Genetics & Genomics
Neurodegeneration is Linked to Jumping Genes
SEP 14, 2022
Neurodegeneration is Linked to Jumping Genes
Scientists are beginning to reveal the secrets of the long, repetitive sequences in the human genome that were once writ ...
OCT 10, 2022
Cell & Molecular Biology
How STR Analysis Supports CAR-T Cell Manufacturing
OCT 10, 2022
How STR Analysis Supports CAR-T Cell Manufacturing
Engineered T cell therapies involve the genetic modification of a patient’s own immune cells with chimeric antigen ...
OCT 11, 2022
Genetics & Genomics
Revealing the Genome Carried by the Common Ancestor to all Mammals
OCT 11, 2022
Revealing the Genome Carried by the Common Ancestor to all Mammals
Every mammal that is found on our planet is descended from one common ancestor, thought to have lived around 180 million ...
OCT 17, 2022
Clinical & Molecular DX
New Study Shows Biological Differences in the Second-Most Common Type of Breast Cancer
OCT 17, 2022
New Study Shows Biological Differences in the Second-Most Common Type of Breast Cancer
Though invasive lobular carcinoma (ILC) is the second-most common type of breast cancer, it has historically been resear ...
OCT 26, 2022
Cell & Molecular Biology
Researchers Reveal Genetic 'Borgs' in the Microbial World
OCT 26, 2022
Researchers Reveal Genetic 'Borgs' in the Microbial World
If you're a Star Trek fan, you've heard of the Borg, a hive-mind that can assimilate others as they seek to take control ...
Loading Comments...