MAY 29, 2018 6:45 PM PDT

A Pair of Genomes is Best

WRITTEN BY: Carmen Leitch

People carry two sets of each chromosome, so our cells carry a pair of genomes; we are diploid. Researchers have now learned more about why a cell is destabilized by the presence of more or less than chromosome pairs. This work will help scientists understand the instability of chromosomes in cancer cells, which carry chromosomes with structural abnormalities, and irregular numbers of chromosomes. The study was reported in the Journal of Cell Biology.

A diploid cell (left) and a haploid cell (right) showing normal and abnormal orientation of chromosomes (purple) and microtubules (green) during cell division, respectively. / Credit/Copyright: Yaguchi K., et al., Journal of Cell Biology, April 30, 2018

Most mammals have diploid cells with pairs of chromosomes. When cells are in a non-diploid state, the cell can become dysfunctional and unstable; it can cause abnormalities and disease, including cancer. An exception is cells that are involved in sexual reproduction; egg and sperm cells carry only one copy of the genome; they are haploid. Another exception is cancer, which can exist in the haploid or tetraploid state, in which they have four sets of chromosomes. When cells are not diploid, they are unstable, but it was not known why.

For this work, the researchers used cells lines that were haploid, diploid, or tetraploid to look at how each cell type behaved as division occurred. Two centrosomes are important players in cell division, regulating the process. They orchestrate microtubules, which separate chromosomes.  

A gradual loss of centrosomes and microtubules was observed in haploid cells, while in tetraploid cells, centrosomes were often duplicated too much, and there were too many microtubules. That seriously disrupted cell replication. It’s known that aberrant levels of microtubules can impact centrosome duplication, and can result in the loss or gain of centrosomes. DNA replication remained constant regardless of the ploidy state of the cell.  

"Incompatibility between centrosome duplication and the DNA replication cycle could be the underlying cause of the instability in non-diploid cells in mammals," noted senior author Ryota Uehara of Hokkaido University. "Our findings could help understand chromosome instability in cancer cells, which are often in a non-diploid state, and lead to new cancer treatment strategies."

Learn more about diploid and haploid cells from the video above by Bozeman Science.

Sources: AAAS/Eurekalert! Via Hokkaido University, Chromosomal Research, Journal of Cell Biology

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAR 02, 2020
Genetics & Genomics
MAR 02, 2020
DNA Replication Discovery May Lead to New Cancer Treatments
Researchers have learned more about DNA replication during cell division, and their insights may help create new types of cancer therapeutics
MAR 04, 2020
Genetics & Genomics
MAR 04, 2020
DNA Fragments and Cartilage Recovered From 75-Million-Year-Old Dinosaur Bones
An international team of researchers has analyzed cartilage from a baby duckbilled dinosaur, and they have identified bi...
MAR 08, 2020
Genetics & Genomics
MAR 08, 2020
Zigzagging DNA
Cells have to store the entire genome in the nucleus, and this lengthy DNA molecule has to be carefully packaged by proteins to fit properly inside.
MAR 25, 2020
Technology
MAR 25, 2020
What is eDNA?
What exactly is eDNA? It is environmental DNA that has underwent the next-generation sequencing and that has been ‘barcoded’ in a way that can
APR 01, 2020
Genetics & Genomics
APR 01, 2020
Using Modified Stem Cells, Researchers Make Old Mice Youthful Again
Scientists were able to make old human cells revert to a younger state by activating the expression of a few genes at ce...
APR 03, 2020
Neuroscience
APR 03, 2020
Why Autism is More Common in Boys than Girls
Researchers from the National Institutes of Health (NIH) have identified how a change in a single amino acid may be linked to symptoms of autism. In partic
Loading Comments...