MAR 30, 2016 1:39 PM PDT

Controlling the Male Mosquito Population to Prevent Malaria

WRITTEN BY: Kara Marker
Controlling the mosquito population that spreads the malaria parasite has long been a technique for reducing the prevalence of the disease. Scientists are now realizing that killing the majority of or the entire population of Anopheles gambiae, the African mosquito malaria vector, is not only highly unattainable but also unnecessary. It is only the females that bite and spread disease, so it is only the female mosquito population that needs to be controlled.
 
Anopheles gambiae

Just like humans, the Y chromosome contains a series of genes that code for proteins determining “maleness” in mosquitos. In a new study published in the journal Proceedings of the Natural Academy of Sciences, scientists looked to the Y chromosome to identify a male-determining gene that could use to “bias” the mosquito population toward the male sex. This novel vector control strategy could change the way scientists target malaria, and the same strategy could be used towards other mosquito species causing dengue fever and carrying the zika virus.
 
In 2013, the Centers for Disease Control and Prevention (CDC) recorded 198 million cases of malaria worldwide, leading to 500,000 deaths. Although malaria is largely preventable in the United States and other developed countries, scientists and doctors are still working to reduce the prevalence in countries like Africa.
 
Although the genome of A. gambiae has long been sequenced, the genetic details of the Y chromosome have never been fully understood. The current study combined single-molecule sequencing, Illumina-based sex-specific transcriptional profiling, and whole-genome sequencing, and the results showed one gene as a potential candidate for engineering a “driving male chromosome.”
 
The gene they found is called YG2, and it is exclusive to the A. gambiae Y chromosome across the entire species. If scientists can find a way for this gene to permeate through a large proportion of offspring, then less female mosquitoes will exist to spread malaria through their bite.
 
 
Source: University of California – Riverside
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
SEP 27, 2021
Cell & Molecular Biology
Newly Identified Cell Type is Linked to Chronic Skin Disorders
SEP 27, 2021
Newly Identified Cell Type is Linked to Chronic Skin Disorders
The chronic skin disease atopic dermatitis (AD) is estimated to affect about 15 percent of children worldwide, and for s ...
OCT 04, 2021
Genetics & Genomics
Zaki syndrome - Pediatric Disorder & Potential Treatment ID'ed
OCT 04, 2021
Zaki syndrome - Pediatric Disorder & Potential Treatment ID'ed
Since it's become quick and relatively inexpensive to sequence a human genome, researchers have gained unprecedented and ...
OCT 04, 2021
Cell & Molecular Biology
Studies Reveal Synaptic Disruptions in Schizophrenia
OCT 04, 2021
Studies Reveal Synaptic Disruptions in Schizophrenia
Neurons signal to one another at crucial junctions called synapses, and synaptic dysfunction is thought to play a role i ...
OCT 07, 2021
Health & Medicine
A School-based Approach to Combatting Adolescent Obesity
OCT 07, 2021
A School-based Approach to Combatting Adolescent Obesity
It should come as no surprise that obesity is a significant public health concern associated with astronomical economic ...
OCT 17, 2021
Technology
AI: The Future of Medtech
OCT 17, 2021
AI: The Future of Medtech
Artificial intelligence (AI) is driving disruption in almost every sector with even the most passing involvement with IT ...
OCT 14, 2021
Neuroscience
Oh, The Good Old Days! Nostalgia May Help Us Through Hard Times
OCT 14, 2021
Oh, The Good Old Days! Nostalgia May Help Us Through Hard Times
Researchers find nostalgia improves happiness
Loading Comments...