MAR 30, 2016 1:39 PM PDT

Controlling the Male Mosquito Population to Prevent Malaria

WRITTEN BY: Kara Marker
Controlling the mosquito population that spreads the malaria parasite has long been a technique for reducing the prevalence of the disease. Scientists are now realizing that killing the majority of or the entire population of Anopheles gambiae, the African mosquito malaria vector, is not only highly unattainable but also unnecessary. It is only the females that bite and spread disease, so it is only the female mosquito population that needs to be controlled.
 
Anopheles gambiae

Just like humans, the Y chromosome contains a series of genes that code for proteins determining “maleness” in mosquitos. In a new study published in the journal Proceedings of the Natural Academy of Sciences, scientists looked to the Y chromosome to identify a male-determining gene that could use to “bias” the mosquito population toward the male sex. This novel vector control strategy could change the way scientists target malaria, and the same strategy could be used towards other mosquito species causing dengue fever and carrying the zika virus.
 
In 2013, the Centers for Disease Control and Prevention (CDC) recorded 198 million cases of malaria worldwide, leading to 500,000 deaths. Although malaria is largely preventable in the United States and other developed countries, scientists and doctors are still working to reduce the prevalence in countries like Africa.
 
Although the genome of A. gambiae has long been sequenced, the genetic details of the Y chromosome have never been fully understood. The current study combined single-molecule sequencing, Illumina-based sex-specific transcriptional profiling, and whole-genome sequencing, and the results showed one gene as a potential candidate for engineering a “driving male chromosome.”
 
The gene they found is called YG2, and it is exclusive to the A. gambiae Y chromosome across the entire species. If scientists can find a way for this gene to permeate through a large proportion of offspring, then less female mosquitoes will exist to spread malaria through their bite.
 
 
Source: University of California – Riverside
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
DEC 18, 2020
Microbiology
Wildfire Health Hazards Include Airborne Microbes
DEC 18, 2020
Wildfire Health Hazards Include Airborne Microbes
Research has shown that air pollution & smoke can have serious detrimental health effects. Now scientists have revealed ...
JAN 04, 2021
Cannabis Sciences
How Does Cannabis Affect the Liver?
JAN 04, 2021
How Does Cannabis Affect the Liver?
As research on cannabis emerges, what we know about how it interacts with the liver is becoming more and more complex. A ...
JAN 06, 2021
Immunology
What's Causing Prostate Cancer Patients to Doze Off?
JAN 06, 2021
What's Causing Prostate Cancer Patients to Doze Off?
For prostate cancer patients, androgen deprivation therapy or ADT is a standard treatment aimed at stalling the growth o ...
JAN 10, 2021
Cell & Molecular Biology
A New Way to Defend Against Mosquito-Borne Viruses
JAN 10, 2021
A New Way to Defend Against Mosquito-Borne Viruses
Mosquitoes are killers; they are thought to be responsible for the deaths of millions of people every year because of th ...
JAN 14, 2021
Clinical & Molecular DX
Tip of the Iceberg: Inaccuracies in Prostate Cancer Diagnostics
JAN 14, 2021
Tip of the Iceberg: Inaccuracies in Prostate Cancer Diagnostics
  Only 10 percent of icebergs are visible on the surface of the water; the remaining 90 percent remains submerged. ...
JAN 18, 2021
Cell & Molecular Biology
MicroRNAs May be Treatment Targets for Traumatic Brain Injury
JAN 18, 2021
MicroRNAs May be Treatment Targets for Traumatic Brain Injury
Traumatic brain injury, which can happen after a blow to the head, has been called a silent epidemic and is the number o ...
Loading Comments...