MAR 30, 2016 1:39 PM PDT

Controlling the Male Mosquito Population to Prevent Malaria

WRITTEN BY: Kara Marker
Controlling the mosquito population that spreads the malaria parasite has long been a technique for reducing the prevalence of the disease. Scientists are now realizing that killing the majority of or the entire population of Anopheles gambiae, the African mosquito malaria vector, is not only highly unattainable but also unnecessary. It is only the females that bite and spread disease, so it is only the female mosquito population that needs to be controlled.
 
Anopheles gambiae

Just like humans, the Y chromosome contains a series of genes that code for proteins determining “maleness” in mosquitos. In a new study published in the journal Proceedings of the Natural Academy of Sciences, scientists looked to the Y chromosome to identify a male-determining gene that could use to “bias” the mosquito population toward the male sex. This novel vector control strategy could change the way scientists target malaria, and the same strategy could be used towards other mosquito species causing dengue fever and carrying the zika virus.
 
In 2013, the Centers for Disease Control and Prevention (CDC) recorded 198 million cases of malaria worldwide, leading to 500,000 deaths. Although malaria is largely preventable in the United States and other developed countries, scientists and doctors are still working to reduce the prevalence in countries like Africa.
 
Although the genome of A. gambiae has long been sequenced, the genetic details of the Y chromosome have never been fully understood. The current study combined single-molecule sequencing, Illumina-based sex-specific transcriptional profiling, and whole-genome sequencing, and the results showed one gene as a potential candidate for engineering a “driving male chromosome.”
 
The gene they found is called YG2, and it is exclusive to the A. gambiae Y chromosome across the entire species. If scientists can find a way for this gene to permeate through a large proportion of offspring, then less female mosquitoes will exist to spread malaria through their bite.
 
 
Source: University of California – Riverside
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
APR 26, 2020
Microbiology
APR 26, 2020
Researchers Design A Polio Vaccine That Won't Cause Polio
Sustained, intense efforts to vaccinate were getting the world very close to eradicating polio, but the vaccine itself o ...
MAY 18, 2020
Cell & Molecular Biology
MAY 18, 2020
Just One Fatty Meal Can Impair Focus
Many tasty and convenient foods are high in fat, and new research has suggested that just one fatty meal may hinder our ...
MAY 20, 2020
Cardiology
MAY 20, 2020
Metabolite Responsible for Poor Metabolic Response to Exercise Identified
For some, working out just doesn’t pay off. A recent study published in Cardiovascular Research by the H ...
MAY 24, 2020
Cell & Molecular Biology
MAY 24, 2020
Common Chemicals May Contribute to Obesity
Several explanations have been proposed to answer the question of why obesity has been on the rise for many years in the ...
MAY 26, 2020
Drug Discovery & Development
MAY 26, 2020
Everyone Can Produce Antibodies Against COVID-19
Researchers at Rockefeller University in New York have found that most people exposed to COVID-19, and who experience sy ...
MAY 24, 2020
Technology
MAY 24, 2020
New Type of Laser for Biomedical Applications
Researchers have discovered a new type of laser developed to give high amounts of energy in very short duration. The app ...
Loading Comments...