APR 22, 2016 9:40 AM PDT

Animal Facility Temperature has a Huge Effect on Experiment Results

WRITTEN BY: Cassidy Reich
Are mouse research facilities at the right temperature? A recent opinion piece/review published in Trends in Cancer seems to think not. Authors Bonnie Hylander and Elizabeth Repasky from Roswell Park Cancer Institute have comprehensively reviewed the literature on the effects of ambient temperature on a variety of disease models and have concluded that temperature does have a significant impact on experimental results.

The National Research Council has set a guideline for mouse facilities to be kept at 20-26?, a comfortable working temperature for humans. However, the thermoneutral temperature for a mouse is much warmer, more like 30-32?. Thermoneutral temperature refers to the temperature at which an organism is expending the minimal amount of energy on temperature regulation. That temperature is much higher for mice than it is for humans and so mice in research facilities are constantly in a state of mild cold stress. When constantly exposed to cold, mice enter a state of “adaptive thermogenesis.” Adaptive thermogenesis is the process of increasing metabolic activity and heat generation by sympathetic nervous system norepinephrine (NE) release. The NE stimulates brown adipose tissue (BAT) activity. Unlike white adipose tissue, BAT is a thermogenic organ, like muscle. The increased BAT activity contributes to some of the changes between mice housed at normal animal facility temperature (sub-thermoneutral temperature, ST) and mice housed at their thermoneutral temperature (TT). Some of the differences are in basal metabolic activity, cardiovascular physiology, the size of organs, and tail length.

Some of these differences caused by ambient temperature have a huge effect on research results. Multiple studies in the field of obesity and neurobiology have shown that temperature can greatly affect results, which makes a lot of sense. If chronic mild cold stress stimulates BAT activity, the mouse will burn more energy at rest compared to a mouse at TT which will affect body weight. Basal metabolic rate can also affect neurobiology because the brain is such an energetically-demanding organ. Importantly, ambient temperature can also have an effect on inflammation and tumor growth. There has been a lot of research of tumor immunology in recent years, but mouse studies in this field might be less translatable to humans than previously thought. Mice at ST are less able to fight cancer compared to mice at TT. The mice kept at warmer temperatures have slower tumor growth and the tumors are less likely to metastasize, probably because the mouse is not under mild cold stress. However, ST can be beneficial for conditions that have an overactive immune system, such as graft versus host disease (GVHD). In that case, mice at ST are much more resilient against the disease than mice kept at TT.
 
The various biological processes affected by differences in ambient temperature.

There is overwhelming evidence that ambient temperature affects results in mouse models of various diseases and can skew the investigation of many different biological processes. But the main point that Hylander and Repasky wanted to make was not that all mouse facilities should be kept at a toasty 30?, but rather that temperature is an important variable. They hypothesized that some issues with reproducibility can be traced back to differences in temperature between labs. With the differential effects that temperature can have on different disease models, Hylander and Repasky have also pointed out that choosing a temperature to optimize the translatability of mouse studies to humans is something to consider when designing an experiment. As a researcher who works with mice, temperature is a variable that I have not really considered before, but after reading this, is one that I will have to pay much more attention to.
About the Author
  • Cassidy is a curious person, and her curiosity has led her to pursue a PhD in Pharmacology at the New York University Sackler Institute of Biomedical Sciences. She likes to talk about science way too much, so now she's going to try writing about it.
You May Also Like
OCT 05, 2020
Cell & Molecular Biology
Gaining Insight Into the Connection Between Depression and Stress
OCT 05, 2020
Gaining Insight Into the Connection Between Depression and Stress
Depression is a common mental illness, and stress is known to be an environmental influence that can increase the risk o ...
OCT 16, 2020
Drug Discovery & Development
FDA Warns Against NSAIDs After Week 20 of Pregnancy
OCT 16, 2020
FDA Warns Against NSAIDs After Week 20 of Pregnancy
The US Food and Drug Administration (FDA) has warned against using nonsteroidal anti-inflammatory drugs (NSAIDs) from 20 ...
OCT 18, 2020
Earth & The Environment
Pandemic-enforced lockdowns cut premature deaths from air pollution
OCT 18, 2020
Pandemic-enforced lockdowns cut premature deaths from air pollution
A new study published in The Lancet Planetary Health reports that pandemic-enforced lockdowns in China and Europe h ...
OCT 19, 2020
Genetics & Genomics
Early Childhood Trauma Affects Metabolism in the Next Generation
OCT 19, 2020
Early Childhood Trauma Affects Metabolism in the Next Generation
Traumatic experiences can have a lasting impact, and kids that suffer through them can feel the effects for a lifetime. ...
OCT 21, 2020
Drug Discovery & Development
New ALS Treatment Extends Life for Several Months
OCT 21, 2020
New ALS Treatment Extends Life for Several Months
Currently, there are only two approved medications to treat Lou Gehrig's disease (also known as ALS), a condition po ...
OCT 29, 2020
Cannabis Sciences
Hemp 10 Years from Now
OCT 29, 2020
Hemp 10 Years from Now
The hemp industry has experienced major growth in recent years, largely due to legalization in many US states. Today, th ...
Loading Comments...