MAY 15, 2016 6:03 PM PDT

Regenerative Medicine: Bioengineered Blood Vessels

WRITTEN BY: Cassidy Reich
Approximately 468,000 individuals are on dialysis for kidney failure. Dialysis is a life-saving procedure, but it is not without its complications. One issue with dialysis is how to get the blood in and out of the patient’s body. The most popular and the safest way to do this is with an arteriovenous (AV) fistula, which is a surgically-created connection between an artery and a vein. Over 50% of patients on dialysis use an AV fistula because it has the least amount of issues with infection and clotting compared to the alternatives. The two alternatives to AV fistula are an expanded polytetrafluoroethylene (ePTFE) graft and a catheter. Less than 30% of dialysis patients use a graft and about 18% use a catheter. While catheters have the most problems with infection, grafts also have more issues with clotting and infections than AV fistulas. Unfortunately, some patients are unable to have an AV fistula or the fistula failed so they have to use one of the less desirable alternatives. The more popular alternative, the ePTFE graft, has the additional issue that it is not very durable. Better options are needed for the hundreds of thousands of people who rely on dialysis.

Thankfully, regenerative medicine has advanced enough to created an alternative. A big, collaborative effort between scientists at Yale and Duke and doctors in Poland and the U.S. has created a bioengineered blood vessel that is safe, effective, and more durable than the synthetic grafts.
 
Staining confirms that the engineered blood vessel is acellular.

The science and the techniques behind this creation are remarkable. The first step is isolating vascular cells from a human donor and growing them in tissue culture. The cells are then placed on a degradable scaffold in the shape of a blood vessel where they will grow and stretch and eventually acquire the physical properties of a real, functional blood vessel. This part of the process takes about 8 weeks. After the 8 week growing process, the scaffold disintegrates, leaving behind a blood vessel. You might think that this is where the process stops, but the researchers took it further. The final step in the process is to wash away all of the cellular, living components to leave behind a protein structure that is mostly collagen. This protein structure maintains the blood vessel shape and is ready for implantation.

The fact that this engineered blood vessel is acellular is crucial because it minimizes the risk of rejection by the patient. In the 60 patients who received the bioengineered blood vessels, there was no incidence of rejection. Because the blood vessels are acellular, the patient's’ cells actually repopulated the collagen scaffold after it was implanted. Durability 1 year after implantation was 90% for the bioengineered blood vessels compared to 60% for the synthetic grafts and the engineered blood vessel were just as safe.

This work will not only help those on dialysis who cannot have an AV fistula, but it also represents a huge step in the broader field of regenerative medicine. Nonliving bioengineered tissue has been implanted to becoming living tissue. This is a very cool advancement that can be applied to multiple areas.

Sources: EurekAlert, The Lancet, and NIDDK
About the Author
  • Cassidy is a curious person, and her curiosity has led her to pursue a PhD in Pharmacology at the New York University Sackler Institute of Biomedical Sciences. She likes to talk about science way too much, so now she's going to try writing about it.
You May Also Like
AUG 24, 2021
Genetics & Genomics
A Potential New, Less Costly Treatment for Pompe Disease
AUG 24, 2021
A Potential New, Less Costly Treatment for Pompe Disease
Some rare genetic disorders impair a critical molecule that has to be replaced, or serious disease or disability will oc ...
AUG 26, 2021
Plants & Animals
Flavonoid-rich Foods Help Regulate Blood Pressure
AUG 26, 2021
Flavonoid-rich Foods Help Regulate Blood Pressure
Flavonoid-rich foods may have a positive effect on blood pressure levels, though according to new research, the secret t ...
AUG 28, 2021
Cannabis Sciences
Could Eye-tracking Data Detect THC Levels?
AUG 28, 2021
Could Eye-tracking Data Detect THC Levels?
Eye-tracking data shows promise for detecting levels of tetrahydrocannabinol (THC). The corresponding study was publishe ...
AUG 28, 2021
Neuroscience
Postponing Retirement May Protect Cognitive Function
AUG 28, 2021
Postponing Retirement May Protect Cognitive Function
Retiring at a later age may protect against cognitive decline. The corresponding study was published in SSM- Popula ...
AUG 29, 2021
Cardiology
Bystanders Can Help Cardiac Arrest Victims Survive
AUG 29, 2021
Bystanders Can Help Cardiac Arrest Victims Survive
New research has indicated that if someone is having a heart attack, a swift response from anyone that might be nearby c ...
SEP 13, 2021
Cell & Molecular Biology
Could This Drug Delivery Capsule Replace Injections?
SEP 13, 2021
Could This Drug Delivery Capsule Replace Injections?
Antibodies are naturally produced by many organisms, as part of immune defense. They also have potential as a therapeuti ...
Loading Comments...