APR 24, 2017 10:40 AM PDT

Bacteria use this 'toxin gun' against our cells

Scientists have created a 3D image of a molecular structure that many different bacteria use to pump toxins into humans cells and spread antibiotic-resistance genes to other bacteria.

Experts predict that by 2050, antibiotic-resistant bacteria will cause as many deaths as cancer.

For the study, published in EMBO Reports, researchers looked specifically at Legionella, the bacteria that causes Legionnaires’ disease, a severe and often lethal form of pneumonia.

When Legionella invades a human cell, it wraps itself in a protective vesicle and opens the molecular structure, known as a type IV secretion system. The molecular “machine” sits in the cell membrane of the bacterium and proceeds to shoot tens of thousands of toxic molecules—hundreds of different types—into the human cell, hijacking cellular pathways and overwhelming the cell’s defenses.

Some type IV secretion systems are thought to be instrumental in spreading antibiotic-resistance genes throughout the bacterial population.

“Understanding the structure of the type IV system is crucial to developing new antibiotics to disable it,” says first author Debnath Ghosal, a postdoctoral scholar at California Institute of Technology. “While this study focuses only on the secretion system of Legionella, a very similar machine is used by many bacteria—such as the pathogens that cause stomach cancer, Q fever, and whooping cough.”

To image the structure—which, at 40 nanometers in diameter, is about 1,000 times too small to be seen by the human eye—the researchers employed a technique called electron cryotomography.

In this method, bacteria are frozen alive and then rotated under a powerful electron microscope to create a series of 2D images that can be digitally reconstructed into a 3D picture. This was the first-ever image of a type IV machine within a bacterium.

The imaging revealed that the structure is shaped into concentric arches, like the symbol for Wi-Fi. Understanding the structure should eventually aid efforts to design drugs that can block the machine. Developing a drug that would disable even one core protein component of the secretion system, Ghosal says, would enable human cells to fight back against the bacterial infection.

“Most current antibiotics focus on destroying the cellular envelope that encompasses a bacterial cell, preventing it from replicating,” says Grant Jensen, professor of biophysics and biology. “Developing new antibiotics that target different aspects of the bacterial cell, such as the type IV secretion system, would enable us to block infections in additional ways.”

Additional researchers from Caltech, Washington University School of Medicine, and the University of Florida are coauthors of the study. The National Institutes of Health and the National Institute of Allergy and Infectious Diseases funded the work.

The article was originally published on futurity.org

About the Author
  • Futurity features the latest discoveries by scientists at top research universities in the US, UK, Canada, Europe, Asia, and Australia. The nonprofit site, which launched in 2009, is supported solely by its university partners (listed below) in an effort to share research news directly with the public.
You May Also Like
NOV 05, 2020
Cardiology
Investigating Platelet-Derived Extracellular Vesicles in Blood Clotting
NOV 05, 2020
Investigating Platelet-Derived Extracellular Vesicles in Blood Clotting
In our bodies, there are millions of signals and packages being sent and received every second. In the past several deca ...
NOV 06, 2020
Microbiology
Daily Aspirin Users Less Likely to Die From COVID-19
NOV 06, 2020
Daily Aspirin Users Less Likely to Die From COVID-19
Recent work has backed up research from earlier this year that suggested that aspirin might help prevent the worst cases ...
NOV 09, 2020
Cancer
A Prognostic Expression Profile for Osteosarcoma
NOV 09, 2020
A Prognostic Expression Profile for Osteosarcoma
Tireless research goes into every cancer diagnostic tools and new therapy. Many types of cancer have made giant steps fo ...
NOV 23, 2020
Cell & Molecular Biology
Vibrations in Coronavirus Proteins Help Them Infect Cells
NOV 23, 2020
Vibrations in Coronavirus Proteins Help Them Infect Cells
If a key isn't cut quite right, it might need a special jiggle to get it into a lock in the right way. Scientists have n ...
DEC 03, 2020
Clinical & Molecular DX
Spit Contains Concussion Clues
DEC 03, 2020
Spit Contains Concussion Clues
Drowsiness, confusion, headaches, and sensitivity to light — it’s sometimes hard for doctors to spot the sig ...
DEC 02, 2020
Cancer
Investigating the Active Components of an Herbal Mushroom
DEC 02, 2020
Investigating the Active Components of an Herbal Mushroom
When people think of traditional medicine, often what comes to mind are the old herbal medical practices in Asian countr ...
Loading Comments...