SEP 05, 2018 12:40 PM PDT

B Cells Contribute to Brain Lesions in Multiple Sclerosis

Worldwide over 2 million people live with multiple sclerosis, affecting a wide range of people including 8,000 individuals under the age of 18 and people as old as 75 developing it. Most individuals are diagnosed between the ages of 20 and 50, with women two to three times more likely to develop multiple sclerosis than men. Multiple sclerosis is a common cause of disability in young adults and can lead to severe complications such as sensory problems, pain, and signs of paralysis. A recent study published in Cell examines the role of immune cells in inflammation and lesion formation in the brain during multiple sclerosis, potentially leading to novel treatment options.

Colorized scanning electron micrograph of a B cell. Source: NIAID

Multiple Sclerosis is a disease of the central nervous system, consisting of the brain and spinal cord, in which the immune system, specifically T cells, attack the protective sheath covering nerve fibers. When this sheath, known as the myelin sheath, is attacked communication between the brain and the rest of the body can be inhibited. As the disease progresses, the nerves themselves may be damaged permanently or deteriorate. Individuals may experience long periods of remission without any symptoms while others with severe multiple sclerosis may lose the ability to walk independently. Other symptoms may include vision loss, numbness or weakness in limbs, tremors, fatigue, and dizziness.

There is currently no cure for multiple sclerosis, treatment includes recovery from attacks, slowing the progression of the disease, and managing symptoms. A wide variety of drugs can be used for treatment after attacks, as well as preventing progression and controlling symptoms. A class of multiple sclerosis drugs, Rituximab and Ocrelizumab, that eliminate B cells led researchers to hypothesize that B cells may play an essential role in multiple sclerosis. Researchers at the University of Zurich, led by neurologist Roland Martin and immunologist Mireia Sospedra, uncovered a key aspect of pathogenesis in multiple sclerosis. "We were able to show for the first time that certain B cells -- the cells of the immune system that produce antibodies -- activate the specific T cells that cause inflammation in the brain and nerve cell lesions," says Roland Martin.

The researchers examined the role of B cells using an in-vitro system that analyzes blood samples from individuals with multiple sclerosis. The study showed that increased levels of activation and cellular division were present for T cells attacking the myelin sheaths. The role of T cells in multiple sclerosis was previously studied and had been the focus of most research. However, this study found that B cells interacting with T cells was actually the underlying cause of pathogensis. Elimination of B cells in the study showed that proliferation of T cells was effectively inhibited. The team also found that activated T cells migrate to the brain and destroy nerve tissue there as well leading to brain lesions. "Our findings not only explain how new MS drugs take effect but also pave the way for novel approaches in basic research and therapy for MS," concludes Roland Martin.

To learn more about multiple sclerosis watch the video below!

Sources: Cell, National Multiple Sclerosis Society, Mayo Clinic

About the Author
  • Caitlin holds a doctorate degree in Microbiology from the University of Georgia where she studied Mycoplasma pneumoniae and its glycan receptors. She received her Bachelor's in Biology from Virginia Tech (GO HOKIES!). She has a passion for science communication and STEM education with a goal to improve science literacy. She enjoys topics related to human health, with a particular soft spot for pathogens.
You May Also Like
OCT 01, 2018
Immunology
OCT 01, 2018
Fate of the T Cell
The immune system consists of a variety of different cell types. But how do the cells undergo differentiation? A study recently published in Science provides insight....
OCT 11, 2018
Microbiology
OCT 11, 2018
New Vaccine Protects Against Lassa Fever and Rabies
In Africa, Lassa fever is a significant threat to public health. It is a member of the same family of viruses as Ebola....
NOV 21, 2018
Immunology
NOV 21, 2018
Yin and Yang of Malaria
Researchers determine the affect of preventative treatment for malaria on infants...
NOV 28, 2018
Immunology
NOV 28, 2018
A Rewind on Autoimmunity
Enzymes identified that are responsible for methylation that will play a role in the production of immune cytokine molecules...
DEC 04, 2018
Immunology
DEC 04, 2018
Shared Bacteria After Birth
A study reveals the benefits of natural birth over cesarean birth in regards to immune development...
JAN 09, 2019
Immunology
JAN 09, 2019
What We Don't Know Won't Hurt Us, Right?
A review in Frontiers in Pediatrics describes a common food additive that could both create and trigger autoimmune attacks, calling for warnings on food labels pending further tests....
Loading Comments...