OCT 21, 2018 6:16 PM PDT

B -cells Drive auto-T-cells to the Brain

WRITTEN BY: Nicholas Breehl

Multiple sclerosis (MS) has long been a disease in which the cause is unclear. Researchers believe MS to be a T cell centered autoimmune disease, with little or no B cell involvement. In fact, previous suggestions that B cells had anything to do with the pathology of MS were mostly ignored. It wasn’t until the success of therapies depleting malignant B cells that the importance of B cell involvement was credited.

A recent study performed by Jenna Pappalardo and Kevin O'Connor the Yale University School of Medicine helps to reveal the details surrounding the role B cells play in their contribution to MS. Specifically the authors of the recent publication in Science Immunology study how B cells influence the T cells that populate MS of the brain.

Multiple sclerosis is an unpredictable, often disabling disease of the central nervous system that disrupts the flow of information within the brain, and between the brain and body. The cause of MS is still unknown, but it is predicted that the disease is triggered by an unidentified environmental factor in genetically predisposed individuals.

The mechanisms that are at play that allow for B cell contribution to MS are not defined. To this end, the co-authors investigated how B cells influence the T cells that populate the MS brain. It is a recognized fact that the MS-derived T cells will undergo increased auto-proliferation, the ability to spontaneously develop with no antigenic or exogenous stimulation.

The research team identified memory C cells as critical drivers of T cell auto-proliferation through human leukocyte antigen (HLA)-DR15 haplotype. The HLA-DR15 haplotype is a distinguishing genetic risk factor for those who develop MS. It was observed that T cell auto-proliferation decreased after B cell depleting therapies. After characterizing the auto-proliferating T cells, the work revealed that the cells are capable of brain-homing due to T helper cells expression of chemokine receptors that aid in brain entry.

The team of researchers performed T cell receptor sequencing to confirm auto-proliferating clones present in the periphery are enriches in brain lesions. This result is supportive of the B cell involvement of autoreactive and potential pathogenic T cell responses in MS.

The observations provided by this team have created a paradigm shift for understanding B cells in MS. Also, the results stimulate questions regarding B cells and auto-proliferating T cells such as the understanding of the elevation of auto-proliferative cells during remission and the specificity of the activating B cells.

Currently, those suffering from MS utilize a comprehensive approach that involves modification of the disease course, treatment of exacerbation, management of symptoms, promotion of function via rehabilitation, and emotional support.

Sources: Science-Immunology, NMSS

About the Author
You May Also Like
DEC 17, 2020
Immunology
A Peanut a Day Keeps Allergies Away
DEC 17, 2020
A Peanut a Day Keeps Allergies Away
Canadian researchers have made a breakthrough for children with peanut allergies: immunotherapy that when taken daily fo ...
DEC 20, 2020
Microbiology
How Do mRNA Vaccines Work?
DEC 20, 2020
How Do mRNA Vaccines Work?
Scientist Katalin Karikó studied mRNA vaccines for years. She spent years getting grant rejections, but has now helped c ...
JAN 28, 2021
Neuroscience
Immune Cells Destroy Synapses in Multiple Sclerosis
JAN 28, 2021
Immune Cells Destroy Synapses in Multiple Sclerosis
Researchers from Germany have found that Multiple sclerosis (MS)-associated inflammation in the cerebral cortex destroys ...
APR 01, 2021
Immunology
Tumor-Killing 101: Vaccine Trains Immune Cells to Keep Skin Cancer at Bay
APR 01, 2021
Tumor-Killing 101: Vaccine Trains Immune Cells to Keep Skin Cancer at Bay
Cancer researchers have developed a therapeutic vaccine for melanoma, a deadly form of skin cancer. Instead of protectin ...
APR 13, 2021
Immunology
The "Unexpected" Reason Why COVID Antivirals Don't Work
APR 13, 2021
The "Unexpected" Reason Why COVID Antivirals Don't Work
Purdue University researchers have made a breakthrough finding that could explain why the disease is so hard to manage t ...
APR 19, 2021
Cell & Molecular Biology
Insight Into the Molecular Basis of Rheumatoid Arthritis
APR 19, 2021
Insight Into the Molecular Basis of Rheumatoid Arthritis
New research has shown how variants in an immune gene can lead to a high risk of developing the autoimmune disorder rheu ...
Loading Comments...