NOV 14, 2018 4:00 PM PST

Rapid Tumor Targeting

WRITTEN BY: Nicholas Breehl

Cancer, a group of diseases characterized by the uncontrolled growth and spread of abnormal cells, continues to be one of the most devastating diseases. If the spread is not controlled, it can result in death. To treat cancer, several therapies have come to light. Researchers at the University of California Irvine have developed a technology that promotes the use of adoptive T cell therapy by reducing development time, increasing specificity and reducing the cost associated with its development.

About 1.7 million new cancer cases are expected to be diagnosed in 2018. Around 609,640 Americans are expected to die of cancer in 2018, equating to approximately 1,670 deaths per day. Adoptive T cell transfer, specifically T cell receptor T cell therapy, holds promise for cancer immunotherapy with encouraging clinical results. The real issue with TCR T cell therapy, however, is that finding a TCR T cell clone is a tedious, time-consuming, and costly task.

Adoptive T cell therapy involves the isolation and ex vivo (outside of the body) of tumor-specific T cells to achieve a greater number of T cells. The tumor-specific T cells are then infused back into cancer patients in an attempt to kill cancer cells.  There are many forms of adoptive T cell therapy being used for cancer treatment; culturing tumor infiltrating lymphocytes or TIL, isolating and expanding one particular T cell or clone, and even using T cells that have been engineered to recognize and attack tumors potently. 

"This technology is particularly exciting because it dismantles major challenges in cancer treatments," said Zhao, an associate professor of pharmaceutical sciences who is affiliated with the Chao Family Comprehensive Center and the Sue & Bill Gross Stem Cell Research Center. "This use of droplet microfluidics screening significantly reduces the cost of making new cancer immunotherapies that are associated with less systemic side effects than standard chemotherapy drugs, and vastly speeds up the timeframe for treatment."

One giant hurdle for adoptive T cell therapy is the identification of particular T cell receptors that will match to the cancer antigen in a pool of millions of other antigens. It can take up to one year to locate a match in which time the cost can amount to around half a million dollars.

Zhao and his research team created a technology that incorporated oil-water droplets allowing cancer cells to match with individual T cells. The TCRs that bind with the cancer cell’s antigens can be sorted and identified within only a few days.

Zhao and his fellow researchers at the University of California Irvine hope their technology will aid in the further developing adoptive T cell therapies for cancer patients.

Sources: Lab on a Chip, Science Daily, American Cancer Society, University of Washington, YouTube

About the Author
You May Also Like
FEB 06, 2020
Drug Discovery & Development
FEB 06, 2020
China Begins Trials for Antiviral Drug to Tackle Coronavirus
So far, coronavirus has infected over 31,493 people globally, and has killed 638. Although 1,563 people have reportedly ...
APR 13, 2020
Cannabis Sciences
APR 13, 2020
Smoking Cannabis Increases COVID-19 Risk
Health experts from the National Institute on Drug Abuse and the American Lung Association have said that smoking cannab ...
APR 21, 2020
Immunology
APR 21, 2020
A Nasal Vaccine Against Tau Tangles
  One of the hallmarks of Alzheimer’s disease (AD) is the accumulation of “tau tangles”. Tau is a ...
APR 11, 2020
Drug Discovery & Development
APR 11, 2020
Promising Experimental Anti-Malarial Drug
At St. Jude Children’s Research Hospital, researchers discovered a fast-acting anti-malarial compound with promisi ...
MAY 06, 2020
Drug Discovery & Development
MAY 06, 2020
Breakthrough in Antibody Treatment for COVID-19
Israeli scientists have announced significant progress in isolating an antibody that may be effective in treating those ...
MAY 19, 2020
Immunology
MAY 19, 2020
The Mystery of the Life-Saving Vaccine Solved
In the early 1900s, French bacteriologists Albert Calmette and Camille Guerin spent the better half of a decade developi ...
Loading Comments...