NOV 14, 2018 8:02 PM PST

Reversing T Cell dysfunction in Cancer: Getting the Body to Fight its own Battles

Using the power of the immune system to eliminate cancerous cells has long the been the goal of immuno-oncology. Immune cells naturally recognize, destroy, and remember the abnormal cells within our bodies while also overlooking healthy cells. This process is called self-tolerance, and when working well, allows the body to rid itself of abnormalities without collateral damage. The challenge with cancer is that tumors can co-opt a variety of self-tolerance mechanisms to evade the destructive potential of the immune system.

Cytotoxic T cells (red) attacking an oral squamous cancer cell (white) by Rita Elena Serda

Self tolerance prevents the immune system from becoming overactive and protects against autoimmunity. Autoreactive immune cells are either destroyed or left inactive. For example, circulating T cells are prevented from excessive proliferation and cytotoxicity by signaling molecules expressed on tissue and regulatory T cells with suppressive functions called Tregs. Tumors take advantage of this self tolerance in order to grow unchecked. A comprehensive approach to reversing this dysfunction by (1) activating cancer-specific cytotoxic T cells, (2) releasing T reg suppression, and (3) producing tumor-specific memory T cells has been termed the immune checkpoint blockade.

Current attempts to achieve the immune checkpoint blockade have focused on targeting signaling molecules involved in maintaining self tolerance. Two such proteins are PD-1 and GITR, and both are frequently exploited by tumors. PD-1 is a protein that acts as a “brake” for the immune system. It is expressed on immune cells including T cells and T regs. Its ligand is expressed on both healthy tissue and tumors. PD-1 signaling inhibits the activity of cytotoxic T cells while promoting the expansion of Tregs.

GITR is a cell surface receptor that acts as an “accelerator” for the immune system. Like PD-1, GITR is found on activated T cells and Tregs, but it has the opposite function. GITR signaling promotes cytotoxic T cell expansion and inhibits Treg activity.

Initially, scientists attempted to activate anti-tumor immunity by either inhibiting PD-1 signaling (cutting the “brakes”) or activating GITR signaling (revving the “accelerator”). Neither indvidual approach was able to achieve immune checkpoint blockade. However, a combinatorial method using an antibody to block PD-1 signaling (anti-PD-1) while simultaneously activating GITR signaling by antibody (anti-GITR) has shown promise.

“In preclinical studies in which monotherapy with anti-GITR or anti–PD-1 Ab has limited efficacy… combination therapy was able to achieve long-term survival in mouse models of ovarian and breast cancer”

To study this anti-tumor treatment, Bei Wang and others at Regeneron Pharmaceuticals used a murine colon adenocarcinoma model to analyze populations of intratumoral cytotoxic CD8+ T cells and Tregs following treatment with anti-PD-1 and/or anti-GITR antibodies. Monotherapy with either anti-PD-1 or anti-GITR were not capable of controlling tumor growth as neither could overcome the immune checkpoint. However, the combination therapy resulted in the rejection of the tumors along with in an increased ratio of T cells to Tregs. Further studies showed that tumor rejection was CD8+ T cell dependent, cancer specific, and that the CD8+ T cells contained memory cell precursors suggesting anti-tumor memory.

The higher numbers of functional CD8+ T cells compared to Tregs along with the rejection of the tumors and presence of memory cell precursors after the combination treatment suggests that the immune checkpoint blockade was successful. Excitingly, this therapy does not appear to be cancer type specific as anti-PD-1 + anti-GITR treatment also resulted in rejection of a mouse model of kidney carcinoma.


It will be interesting to see whether this combination treatment, with or without cancer vaccination or chemotherapy, has the same dramatic results in humans.

Sources: European Journal of CancerScience ImmunologyJohns Hopkins Medicine;

About the Author
  • Aleishia is a freelance medical/science writer that specializes in research-oriented content. Contact her for work.
You May Also Like
MAY 17, 2020
Genetics & Genomics
How Non-Coding Genomic Regions Influence Autoimmune Disease
MAY 17, 2020
How Non-Coding Genomic Regions Influence Autoimmune Disease
Scientists have gained new insight into autoimmune and allergic disorders.
JUN 09, 2020
Immunology
Peacekeeping Engineered T Cells Restore the Balance in Diabetes
JUN 09, 2020
Peacekeeping Engineered T Cells Restore the Balance in Diabetes
For patients with type 1 diabetes, hope is around the corner with a new experimental therapy that uses genetically modif ...
JUN 15, 2020
Drug Discovery & Development
FDA Approves HPV Vaccine to Prevent Throat Cancer
JUN 15, 2020
FDA Approves HPV Vaccine to Prevent Throat Cancer
For around a decade, research has suggested that Gardasil, an HPV vaccine, could prevent throat cancer, a condition that ...
JUL 19, 2020
Drug Discovery & Development
Study Finds Turmeric has Antiviral Effects
JUL 19, 2020
Study Finds Turmeric has Antiviral Effects
Researchers from the Wuhan University of Engineering in China have found that curcumin, a natural compound found in turm ...
AUG 13, 2020
Immunology
Antibiotics Now, Inflammatory Bowel Disease Later
AUG 13, 2020
Antibiotics Now, Inflammatory Bowel Disease Later
Taking a course of antibiotics as a baby has been linked to a spiked risk of developing inflammatory bowel disease in ad ...
AUG 17, 2020
Immunology
Nervous Protein Neuromedin B May Prevent Immune Reactivity
AUG 17, 2020
Nervous Protein Neuromedin B May Prevent Immune Reactivity
A protein produced by the nervous system seems to play a role in regulating the immune system. For people with inflammat ...
Loading Comments...