JAN 15, 2019 5:02 PM PST

Stem Cells: Is a Clean Slate Always a Better Start?

WRITTEN BY: Nicholas Breehl

Bone marrow transplants, which involve transplanting healthy blood stem cells, offer the best treatment for many types of cancers, blood disorders, and immune diseases. Even though 22,000 of these procedures are performed each year in the US, much remains to be understood about how they work.

A new USC and Stanford study, conducted in mice, deepens the mystery, showing that successfully transplanted stem cells don't behave "normally" as in a healthy person without a transplant. Instead, the radiation and high-dose chemotherapy used to wipe out diseased stem cells before transplantation appears to trigger "extreme behavior" in the newly transplanted cells.

The findings appeared in Proceedings of the National Academy of the Sciences (PNAS) on January 8.

"Our research has important implications for understanding and optimizing bone marrow transplants and certain types of gene therapy," said lead researcher and co-corresponding author Rong Lu, assistant professor of stem cell biology and regenerative medicine at USC. The other co-corresponding author is Irving Weissman, director of the Stanford Institute for Stem Cell Biology and Regenerative Medicine.

In a series of experiments, scientists learned that when transplanted into an irradiated mouse, only a tiny minority of the stem cells produce blood and immune cells, while many other stem cells become dormant and do nothing. In addition, post-radiation, this handful of "super producer" stem cells also become biased towards producing only certain types of immune cells. However, the overall blood and immune system still tend to remain balanced.

In mice that had not undergone radiation, all stem cells contributed equally to the blood and immune systems, except for T cells, suggesting that the preconditioning regimen used to ensure successful transplantation is the source of the abnormal cell behavior.

Sources: Science Daily, PNAS, YouTube

About the Author
You May Also Like
AUG 19, 2021
Cancer
Japanese Berry Vine Could Treat Lung Cancer
AUG 19, 2021
Japanese Berry Vine Could Treat Lung Cancer
A berry-producing vine in Japan has shown promise in mouse models for treating lung cancer. The corresponding study was ...
SEP 14, 2021
Health & Medicine
Graphene-Oxide Based Nanotechnology and Immunology-An Exciting Partnership
SEP 14, 2021
Graphene-Oxide Based Nanotechnology and Immunology-An Exciting Partnership
As treatments and infection control practices surrounding COVID-19 continue to evolve, nanotechnological solutions are b ...
SEP 14, 2021
Drug Discovery & Development
A novel drug that targets the removal of pathogenic antibodies in myasthenia gravis
SEP 14, 2021
A novel drug that targets the removal of pathogenic antibodies in myasthenia gravis
Myasthenia gravis is a chronic autoimmune disorder characterized by muscle weakness and fatigue. The disorder leads to a ...
OCT 14, 2021
Immunology
'Bio-Betters' Form the Next Wave of Cancer Therapies
OCT 14, 2021
'Bio-Betters' Form the Next Wave of Cancer Therapies
  Antibodies are blood proteins with highly specialized functions: to recognize and eliminate bacteria, viruses, an ...
NOV 16, 2021
Immunology
How a BBQ Lighter Inspired a New Vaccine Technology
NOV 16, 2021
How a BBQ Lighter Inspired a New Vaccine Technology
It’s the size of a pen, weighs as much as two AA batteries, and works without a power source. A new microneedle de ...
NOV 11, 2021
Cell & Molecular Biology
Why Arthritis Tends to Affect the Same Joints Repeatedly
NOV 11, 2021
Why Arthritis Tends to Affect the Same Joints Repeatedly
While arthritis may not cause pain all the time, when it flares, it tends to recur in the same joints. This can create s ...
Loading Comments...