JAN 15, 2019 5:02 PM PST

Stem Cells: Is a Clean Slate Always a Better Start?

WRITTEN BY: Nicholas Breehl

Bone marrow transplants, which involve transplanting healthy blood stem cells, offer the best treatment for many types of cancers, blood disorders, and immune diseases. Even though 22,000 of these procedures are performed each year in the US, much remains to be understood about how they work.

A new USC and Stanford study, conducted in mice, deepens the mystery, showing that successfully transplanted stem cells don't behave "normally" as in a healthy person without a transplant. Instead, the radiation and high-dose chemotherapy used to wipe out diseased stem cells before transplantation appears to trigger "extreme behavior" in the newly transplanted cells.

The findings appeared in Proceedings of the National Academy of the Sciences (PNAS) on January 8.

"Our research has important implications for understanding and optimizing bone marrow transplants and certain types of gene therapy," said lead researcher and co-corresponding author Rong Lu, assistant professor of stem cell biology and regenerative medicine at USC. The other co-corresponding author is Irving Weissman, director of the Stanford Institute for Stem Cell Biology and Regenerative Medicine.

In a series of experiments, scientists learned that when transplanted into an irradiated mouse, only a tiny minority of the stem cells produce blood and immune cells, while many other stem cells become dormant and do nothing. In addition, post-radiation, this handful of "super producer" stem cells also become biased towards producing only certain types of immune cells. However, the overall blood and immune system still tend to remain balanced.

In mice that had not undergone radiation, all stem cells contributed equally to the blood and immune systems, except for T cells, suggesting that the preconditioning regimen used to ensure successful transplantation is the source of the abnormal cell behavior.

Sources: Science Daily, PNAS, YouTube

About the Author
You May Also Like
JAN 26, 2021
Immunology
Can we Stop Multiple Sclerosis Progression?!
JAN 26, 2021
Can we Stop Multiple Sclerosis Progression?!
Multiple sclerosis is known for its progression of symptoms even after a period of complete remission. There is no way o ...
MAY 11, 2021
Immunology
Immune Cells Help Brain Tumors Spread, but We Can Stop Them
MAY 11, 2021
Immune Cells Help Brain Tumors Spread, but We Can Stop Them
Researchers have discovered how a glitch in the brain’s immune system can inadvertently cause an accelerated growt ...
MAY 10, 2021
Coronavirus
Researchers Create a Vaccine For Multiple SARS Viruses, Including COVID-19 & Variants
MAY 10, 2021
Researchers Create a Vaccine For Multiple SARS Viruses, Including COVID-19 & Variants
The pandemic virus SARS-CoV-2 has changed the world in devastating ways, taking hundreds of thousands of lives & new var ...
MAY 12, 2021
Immunology
Illuminating the COVID-19 Disease Profile Puzzle
MAY 12, 2021
Illuminating the COVID-19 Disease Profile Puzzle
Teams of science experts from numerous disciplines have been collecting data on SARS-CoV-2 for over a year to understand ...
JUN 01, 2021
Immunology
Nanoparticles Designed to Enhance Seasonal Flu Vaccines
JUN 01, 2021
Nanoparticles Designed to Enhance Seasonal Flu Vaccines
Seasonal flu vaccines only work around 40 to 60 percent of the time, says the U.S. Centers for Disease Control and Preve ...
JUN 08, 2021
Immunology
Fueling the Immune System's Killers
JUN 08, 2021
Fueling the Immune System's Killers
There’s a group of “killers” protecting your body against infections and eliminating potentially cance ...
Loading Comments...