NOV 29, 2019 6:17 AM PST

Protecting Killer Immune Cells from Themselves

WRITTEN BY: Kara Marker

Destroying human cells compromised by viruses and cancer is the name of the game for so-called “killer” cells of the immune system. They employ aggressive tactics to live up to their name, but how can they protect themselves from friendly fire? A new research study identifies the precise protective mechanism.

 

Image source: NIAID

 

“Killer” immune cells, namely natural killer (NK) cells and cytotoxic T cells, produce toxic proteins called perforins to target and destroy cancerous and virally-infected cells. Perforin is a glycoprotein that creates pores in the cell membranes of target cells; in this scenario, the target cells are those taken over by cancer or virus. Perforin is a key player in the immune system: the inflammatory response to microbial infection, immune surveillance, immunopathology, autoimmune disease, and allogeneic transplant rejection.

Researchers from the present study found that the more ordered and tightly packed the lipids were in the lipid membrane that makes up the cell surface of killer immune cells, the less perforins bound to the cell surface. When researchers manipulated this order and packing, they observed increased cellular sensitivity to perforin.

However, even when the killer immune cells were experiencing overexposure to perforin - so much so that the perforin stuck to the surface of the cells - they still remained unaffected by perforin’s usual cellular destruction effects. Researchers ultimately discovered that this was thanks to the negative charge of select lipids that were sent to the cell surface; these lipids bound the extraneous perforin and prevented any cellular destruction.

"We have long known that local lipid order can change how cells communicate which each other, but it was rather surprising that the precise physical membrane properties can also provide such an important layer of protection against molecular hole-punchers,” explained joint first author Adrian Hodel.

The study’s findings go beyond simply understanding more about the protective mechanisms employed by killer immune cells. Researchers theorize that cancer cells may mimic this protective action to evade destruction by the immune system. This could be the reason why certain types of cancer are less susceptible than others to immunotherapies, which rely on maximizing the natural power of the immune system to target cancer.

Sources: University College London, Nature Communications, Central European Journal of Immunology

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
JAN 18, 2021
Immunology
Arthritis Drug Approved for Critically Ill COVID Patients
JAN 18, 2021
Arthritis Drug Approved for Critically Ill COVID Patients
Critically ill COVID patients in the U.K. may receive an arthritis drug after a study showed that treatment lowered mort ...
FEB 01, 2021
Microbiology
A Potential Leptospirosis Vaccine is Created
FEB 01, 2021
A Potential Leptospirosis Vaccine is Created
Spirochetes are a type of free-living, spiral-shaped bacteria, some of which are harmless and others that can cause dise ...
MAR 02, 2021
Immunology
Another Trick up Tumors' Sleeves Exposed
MAR 02, 2021
Another Trick up Tumors' Sleeves Exposed
Tumors have sneaky strategies for establishing themselves within healthy tissues, flourishing in plain sight of circulat ...
MAR 04, 2021
Immunology
Climate Change Tightens Its Grip on Hay Fever Sufferers
MAR 04, 2021
Climate Change Tightens Its Grip on Hay Fever Sufferers
There’s bad news for pollen allergy sufferers: New research has shown that climate change is making hay fever seas ...
MAY 05, 2021
Immunology
Novel 3D Bio-printed Leukemia Model Shows Potential for Treatment Testing Platform
MAY 05, 2021
Novel 3D Bio-printed Leukemia Model Shows Potential for Treatment Testing Platform
Three-dimensional (3D) printing has become a common technique over the past two decades. Now, the technique has been ado ...
MAY 17, 2021
Cell & Molecular Biology
Survey Results: Where Is Pluripotent Stem Cell Research Now?
MAY 17, 2021
Survey Results: Where Is Pluripotent Stem Cell Research Now?
Human pluripotent stem cell (hPSC) lines are now commonly used across the globe. In the lab, researchers rely on hPSCs t ...
Loading Comments...