NOV 29, 2019 6:17 AM PST

Protecting Killer Immune Cells from Themselves

WRITTEN BY: Kara Marker

Destroying human cells compromised by viruses and cancer is the name of the game for so-called “killer” cells of the immune system. They employ aggressive tactics to live up to their name, but how can they protect themselves from friendly fire? A new research study identifies the precise protective mechanism.

 

Image source: NIAID

 

“Killer” immune cells, namely natural killer (NK) cells and cytotoxic T cells, produce toxic proteins called perforins to target and destroy cancerous and virally-infected cells. Perforin is a glycoprotein that creates pores in the cell membranes of target cells; in this scenario, the target cells are those taken over by cancer or virus. Perforin is a key player in the immune system: the inflammatory response to microbial infection, immune surveillance, immunopathology, autoimmune disease, and allogeneic transplant rejection.

Researchers from the present study found that the more ordered and tightly packed the lipids were in the lipid membrane that makes up the cell surface of killer immune cells, the less perforins bound to the cell surface. When researchers manipulated this order and packing, they observed increased cellular sensitivity to perforin.

However, even when the killer immune cells were experiencing overexposure to perforin - so much so that the perforin stuck to the surface of the cells - they still remained unaffected by perforin’s usual cellular destruction effects. Researchers ultimately discovered that this was thanks to the negative charge of select lipids that were sent to the cell surface; these lipids bound the extraneous perforin and prevented any cellular destruction.

"We have long known that local lipid order can change how cells communicate which each other, but it was rather surprising that the precise physical membrane properties can also provide such an important layer of protection against molecular hole-punchers,” explained joint first author Adrian Hodel.

The study’s findings go beyond simply understanding more about the protective mechanisms employed by killer immune cells. Researchers theorize that cancer cells may mimic this protective action to evade destruction by the immune system. This could be the reason why certain types of cancer are less susceptible than others to immunotherapies, which rely on maximizing the natural power of the immune system to target cancer.

Sources: University College London, Nature Communications, Central European Journal of Immunology

About the Author
I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
AUG 27, 2022
Drug Discovery & Development
Universal Vaccine for Influenza A and B Shows Promise in Mice
AUG 27, 2022
Universal Vaccine for Influenza A and B Shows Promise in Mice
A new universal flu vaccine is effective against both influenza A and B viruses in mice. The corresponding study was pub ...
SEP 26, 2022
Drug Discovery & Development
Respiratory Syncytial Virus Antigens and Antibodies
SEP 26, 2022
Respiratory Syncytial Virus Antigens and Antibodies
In early April, Pfizer announced a $525 million acquisition of ReViral’s novel therapy for respiratory syncytial v ...
OCT 13, 2022
Cell & Molecular Biology
How the Tumor Microenvironment Can Disarm Immunity
OCT 13, 2022
How the Tumor Microenvironment Can Disarm Immunity
Cancer is basically what happens when cells start growing and dividing uncontrollably, and it gets worse when those canc ...
NOV 11, 2022
Drug Discovery & Development
The development of a thermostable vaccine for tuberculosis
NOV 11, 2022
The development of a thermostable vaccine for tuberculosis
Tuberculosis is the deadliest infectious disease worldwide (prior to, and aside from COVID-19 infections). Acc ...
NOV 19, 2022
Immunology
Substantial Monkeypox Transmission Happens Before Symptoms Are Recognized
NOV 19, 2022
Substantial Monkeypox Transmission Happens Before Symptoms Are Recognized
Researchers have found evidence for “substantial” monkeypox transmission before symptoms appear. A study pub ...
NOV 16, 2022
Genetics & Genomics
Genes That Diagnose Lyme Disease are Identified
NOV 16, 2022
Genes That Diagnose Lyme Disease are Identified
Lyme disease is caused by a bacterium that is transmitted by tick bites. The incidence of Lyme disease has been increasi ...
Loading Comments...