JUL 23, 2020 7:36 AM PDT

Cancer Therapy Reduces Lung Scarring

WRITTEN BY: Tara Fernandez

Scientists at the Stanford Institute for Stem Cell Biology and Regenerative Medicine have discovered a striking parallel between scar tissue formation and tumor growth: they both evade immune surveillance. As a result of this similarity, therapies to reactivate the immune system to target cancer cells have been shown to also work for treating scar tissue in the lung. The work was published recently in Nature Communications.

Idiopathic lung fibrosis is caused by overactive scar tissue cells called fibroblasts. Though the precise triggers and accelerants of fibrosis progression are still not fully understood, what is known is that in general, lung scarring is bad news. Progression of the conditions greatly limits the patients’ ability to breathe normally, with devastating effects on their overall quality of life. The only clinical intervention for advanced-stage lung fibrosis is a lung transplant.

The study, led by pathology expert Gerlinde Wernig, MD, aimed to identify how the normal molecular pathways involved in preventing overactive fibroblasts are disrupted in the case of fibrosis. Why don’t circulating immune cells such as macrophages detect a problem?

“In idiopathic lung disease, these fibroblasts behave almost like cancer cells,” said Wernig. 

“They grow over normal lung structures, obliterating airways, and blocking the passage of air in and out of the blood.” Fascinatingly, this homology extends to how fibroblasts evade capture by the body’s immune cells — via the proteins CD47 and PD-1.

Another inflammatory molecule that came into play was IL-6, a molecule whose predominant role in cancer is to promote tumor growth.

“When we looked at clinical tissue samples from lung fibrosis patients, we saw a huge increase in IL-6,” Wernig said. “IL-6 is known to be associated with chronic inflammatory disease, but it wasn’t clear how the molecule was contributing to the scarring process.”

By experimentally blocking CD47 and IL6 in a mouse model of idiopathic lung fibrosis, Wernig and team saw a massive reduction in lung scarring, as a result of increased immune clearance of fibroblasts. According to Wernig, this is a breakthrough for lung fibrosis patients, for whom clinical interventions beyond oxygen ventilators are extremely limited.

“This study presents hope for a new treatment option that could improve the condition of patients with lung fibrosis.” 

 

 

Sources: Nature Communications, Stanford Medicine.


 

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
MAY 23, 2020
Microbiology
The FDA Yanks Some COVID-19 Antibody Tests From the Market
MAY 23, 2020
The FDA Yanks Some COVID-19 Antibody Tests From the Market
The massive demand for diagnostic testing led the FDA to open a short window for many testing products to go to market w ...
JUN 14, 2020
Chemistry & Physics
Why Are There So Few Black People in STEM?
JUN 14, 2020
Why Are There So Few Black People in STEM?
On June 10th, 2020, thousands of STEM scientists and organizations around the world went on strike to protest systemic r ...
JUL 21, 2020
Immunology
Hormone Therapies Keep Urinary Tract Infections at Bay
JUL 21, 2020
Hormone Therapies Keep Urinary Tract Infections at Bay
More than half of all women will suffer from a urinary tract infection, or UTI, during their lifetimes. Women are consid ...
JUL 30, 2020
Immunology
Sunshine Could Lower Your Risk of Developing MS
JUL 30, 2020
Sunshine Could Lower Your Risk of Developing MS
In multiple sclerosis, or MS, the insulating sheaths around nerve cells in the brain and spinal cord called myelin becom ...
AUG 05, 2020
Immunology
Intercepting Cancer Cells Before They Can Dodge the Immune System
AUG 05, 2020
Intercepting Cancer Cells Before They Can Dodge the Immune System
The battle that naturally occurs between the body’s immune system and cancerous cells is one that scientists have ...
AUG 27, 2020
Health & Medicine
Africa Eradicates Wild Poliovirus
AUG 27, 2020
Africa Eradicates Wild Poliovirus
On August 25th, Africa was officially certified free of wild poliovirus, a tremendous milestone that was decades in the ...
Loading Comments...