DEC 23, 2015 08:02 AM PST

Immune Cell Regulation to Treat Prostate Cancer

WRITTEN BY: Kara Marker
Inhibiting large cellular populations of myeloid derived suppressor cells (MDSCs) could be a new therapy for prostate cancer, results show from a study at the University of Texas MD Anderson Cancer Center.

Upon infection by a pathogen or cancerous cells, MDSCs expand and suppress the T cell response needed by the body to properly fight cancer growth. Reversing this process might be the key to treating prostate cancer.
 

"MDSCs are infiltrating immune cells that promote tumors through their striking lack of immunological response,” said Y. Alan Wang, PhD and co-author of the study paper recently published in Cancer Discovery.

At first glance it seems that the T cell-inhibiting action of MDSCs is counterintuitive, but this action does come in handy when the body is regulating “immune response and tissue repair” in healthy individuals (Nature Reviews Immunology).

Using a unique prostate cancer mouse model and patient tumor samples, scientists from the University of Texas depleted MDSCs in the models and observed the subsequent response of the tumors. After seeing progression suppressed, the team was also able to identify a regulatory pathway involving Hippo-Yap1 and Cxcl5, a chemokine that attracts MDSCs which then express anther protein, Cxcr2. Because of its association with MDSCs, blocking Cxcr2 similarly suppressed tumor progression to when MDSCs are directly suppressed.

The same result also occurred when Yap1 expression was inhibited. As a regulator of Cxcl5, Yap1 is unable to recruit MDSCs to the tumor site when inhibited.

"The targeting of either MDSC recruitment or infiltrated MDSCs may represent a valid therapeutic opportunity in treating advanced prostate cancer." Said Ronald A. DePinho, MD, and the other co-author on the paper.

Watch the following video to learn more about prostate cancer.

Source: University of Texas MD Cancer Center 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAY 08, 2018
Immunology
MAY 08, 2018
Nuclear Pore Complexes Vital for T Cell Survival
What’s happening on the molecular level that ensures protective T cells of the immune system will do their job? A new study from Sanford-Burnham Preb...
JUN 21, 2018
Immunology
JUN 21, 2018
The Silver Tsunami: An Aging Immune System and Cancer
Why do cases of cancer become more common as we get older? Scientists interested in explaining the so-called “Silver Tsunami” phenomenon look t...
JUN 30, 2018
Immunology
JUN 30, 2018
CD4 T Cells Responsible for Inflammatory Bowel Disease
A specific subset of immune cells could be targeted to better treat inflammatory bowel disease (IBD). A new University of Alabama at Birmingham study point...
JUL 04, 2018
Drug Discovery
JUL 04, 2018
Increased Dose of Drug 'Rifampin' Effective in Eliminating Tuberculosis Bacterium
According to a randomized controlled trial, a TB drug by the name ‘Rifampin’ was seen to effectively kill TB bacteria in sputum cultures when a...
JUL 12, 2018
Videos
JUL 12, 2018
Why Poison Ivy Makes us Itch
For some people, summer comes with a risk of many itchy nuisances, including poison ivy....
AUG 08, 2018
Immunology
AUG 08, 2018
Doxorubicin Causes Heart Toxicity by Immune System Disruption
Chemotherapy drug Doxorubicin disrupts metabolism that controls immune responses in the heart leading to heart toxicity....
Loading Comments...