JAN 21, 2016 3:07 PM PST

The Science Behind the Memory of the Immune System

WRITTEN BY: Kara Marker
How exactly does our immune system “remember” certain pathogens so the response to an infection is more powerful after the first invasion? New findings from the University of Birmingham points to a unique relationship between lymphocytes and certain chromosomal regions. This connection helps the cells remember characteristics of pathogens to make the next attack faster and better, in a similar way to how some mobile phones remember the words people frequently text to their contacts and provide them with suggestions in future messages.
 
The study was published in The EMBO J and led by Peter Cockerill.
 
A healthy T lymphocyte

Cockerill and his team found that T lymphocytes are activated in response to an infection, the immune system leaves behind “imprints” in T lymphocytes’ chromosomes if it is the first time the body is experiencing a certain pathogen.
 
When the body encounters the pathogen a second time, these genes begin to be expressed again, following suit with reactivated immune cells. Immune cells remain in a dormant state in between infections when the body is healthy and functioning normally. However, these cells sleep with one eye open; they are more prepared than other non-primed immune cells to spring into action when the same pathogen returns for round two. The chromosome activation is what enables these dormant cells to “sit poised, ready to respond much faster when activated again in the future."
 
Keeping the “soldiers” prepared but at rest keeps the body from attacking its own cells by mistake. Autoimmune disease develops from an overactive or dysfunctional immune response, and with lymphocytes remaining dormant until needed, the risk of autoimmune disease is reduced.
 

Source: University of Birmingham 
 
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
OCT 12, 2021
Immunology
Cancer Drug Helps Alzheimer's Mice Remember
OCT 12, 2021
Cancer Drug Helps Alzheimer's Mice Remember
What if a drug—specifically developed to treat one disease—had the potential to address other non-related co ...
DEC 02, 2021
Cancer
A New Method to Enhance Immunotherapy in Mouse Tumors
DEC 02, 2021
A New Method to Enhance Immunotherapy in Mouse Tumors
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer, accounting for about 90% of pancre ...
DEC 21, 2021
Immunology
Shark Immune Proteins as Pandemic 'Insurance'?
DEC 21, 2021
Shark Immune Proteins as Pandemic 'Insurance'?
Sharks are incredibly hardy creatures—they've survived in marine ecosystems, often unchallenged predators, for ...
DEC 28, 2021
Immunology
Blood-Sucking Worms No Match Against Vaccine Pill
DEC 28, 2021
Blood-Sucking Worms No Match Against Vaccine Pill
Ancylostoma caninum, a type of hookworm, attached to the intestinal mucosa. Image via Wikimedia Commons. Hookworms are b ...
DEC 27, 2021
Cancer
Improving Immunotherapy with a Novel Nanoparticle
DEC 27, 2021
Improving Immunotherapy with a Novel Nanoparticle
Malignant pleural effusion (MPE) occurs in cancer patients experiencing a buildup of fluid and tumor cells in the pleura ...
JAN 14, 2022
Drug Discovery & Development
Repurposing Drugs 101
JAN 14, 2022
Repurposing Drugs 101
Drug development is expensive. Taking into account costs of failed trials, the average drug costs $985 million to resear ...
Loading Comments...