JAN 21, 2016 3:07 PM PST

The Science Behind the Memory of the Immune System

WRITTEN BY: Kara Marker
How exactly does our immune system “remember” certain pathogens so the response to an infection is more powerful after the first invasion? New findings from the University of Birmingham points to a unique relationship between lymphocytes and certain chromosomal regions. This connection helps the cells remember characteristics of pathogens to make the next attack faster and better, in a similar way to how some mobile phones remember the words people frequently text to their contacts and provide them with suggestions in future messages.
 
The study was published in The EMBO J and led by Peter Cockerill.
 
A healthy T lymphocyte

Cockerill and his team found that T lymphocytes are activated in response to an infection, the immune system leaves behind “imprints” in T lymphocytes’ chromosomes if it is the first time the body is experiencing a certain pathogen.
 
When the body encounters the pathogen a second time, these genes begin to be expressed again, following suit with reactivated immune cells. Immune cells remain in a dormant state in between infections when the body is healthy and functioning normally. However, these cells sleep with one eye open; they are more prepared than other non-primed immune cells to spring into action when the same pathogen returns for round two. The chromosome activation is what enables these dormant cells to “sit poised, ready to respond much faster when activated again in the future."
 
Keeping the “soldiers” prepared but at rest keeps the body from attacking its own cells by mistake. Autoimmune disease develops from an overactive or dysfunctional immune response, and with lymphocytes remaining dormant until needed, the risk of autoimmune disease is reduced.
 

Source: University of Birmingham 
 
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAR 18, 2020
Immunology
MAR 18, 2020
Immune cells can ease chronic pain
In the words of C.S. Lewis, “Pain insists upon being attended to.” This is especially true for patients suff ...
MAR 23, 2020
Drug Discovery & Development
MAR 23, 2020
Top 5 Candidates for Coronavirus Vaccine Around the World
It’s easy to complain about the role of big pharma in medicine-making and the hassle of dealing with protective pa ...
APR 14, 2020
Immunology
APR 14, 2020
Immunotherapy Shows Promise, Destroys Metastatic Brain Tumors
Lung cancer is the leading cause of death in both men and women in the U.S., with smokers bearing an elevated risk of th ...
MAY 05, 2020
Immunology
MAY 05, 2020
Winter the Llama: An Unlikely Hero in the Fight Against COVID-19
A new hero in the fight against COVID-19 has emerged: 4-year-old Winter, a llama that currently resides in the Belgian c ...
MAY 07, 2020
Cell & Molecular Biology
MAY 07, 2020
How the Function of a Critical Immune Cell is Related to Metabolism
This work suggests that it may be possible to dampen autoimmunity or promote an immune attack on cancer through a bioche ...
MAY 16, 2020
Neuroscience
MAY 16, 2020
Stem Cell Method (Parkinson's) Could Avoid Transplant Rejection
Researchers at McLean Hospital and Massachusetts General Hospital (MGH) have tested a stem cell treatment method that av ...
Loading Comments...