JAN 26, 2016 11:03 AM PST

Protective Autophagy in Regulatory T Cells

WRITTEN BY: Kara Marker
Acting alongside T helper cells, the all-stars of adaptive immunity, regulatory T cells work to suppress any “potentially deleterious” T helper cell activities that could lead to an autoimmune disorder (Scandinavian Journal of Immunology). T helper cells activate effector immune cells to attack invading pathogens and abnormally growing cells, which is a good thing. However, these lymphocytes can also make mistakes and wrongly target the body’s own cells. This is where regulatory T cells come into play, protecting the body by maintaining self-tolerance and preventing allergic responses.
 
With regulatory T cells at the ready to keep the body’s immune system from attacking itself, other immune cells are free to concentrate on attacking pathogens and killing cancerous cells. However, what happens when the regulatory T cells themselves need protecting?
 
A regulatory T cell (blue) interacting with bacteria (green)

A new study published in Nature Immunology by scientists from St. Jude Children’s Research Hospital investigated the protective mechanisms of regulatory T cells. Like a doctor who helps treat and prevent other people from getting sick, regulatory T cells also depend on certain cellular processes to continue normal function, similar to how doctors wear masks, gloves, and wash their hands when with a patient.
 
"Regulatory T cells are very specialized cells that require activation to perform their function in curtailing undesirable immune responses," said study leader Hongbo Chi, PhD.
 
After being activated, a process called “autophagy” relieves regulatory T cells of “molecular garbage” that piles up in the cell. Imaging studies done from colon cancer cells in Chi’s experiments proved the necessity of autophagy for regulatory T cell function. Next, the team looked at mice models of disease to see how organisms respond as a whole when the process of autophagy was disturbed. Key genes for autophagy, Atg5 and Atg7, were deleted, and they saw regulatory T cell malfunction as expected in these knock-out mice.
 
Activated regulatory T cells without functional autophagy experienced excessive cell death and a “loss of identity,” a phrase Chi used to describe their non-regulatory T cell action that occurred without autophagy. Thus, after losing their traditional abilities and gaining new ones, the regulatory T cell population in the knock-out mice were actually able to clear tumors better than control mice.
 
"From this perspective, targeting autophagy could act in synergy with strategies that block autophagy in tumor cells for added benefits in cancer therapy," Chi said.
 
He and his team plan to study other tumor cell types with autophagy inhibition in regulatory T cells, focusing on the “detailed biochemical mechanisms” behind the protective mechanism of autophagy for regulatory T cells. The potential for new immunotherapies for cancer to be derived from this research is great, but Chi and his team have to ensure that upsetting the protective function of regulatory T cells does not create dangerous backlash for cancer patients.
 

Source: St. Jude Children’s Research Hospital
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
AUG 05, 2020
Coronavirus
Age-old Immune Components Affecting COVID-19 Severity
AUG 05, 2020
Age-old Immune Components Affecting COVID-19 Severity
One of the most unsettling aspects of the coronavirus pandemic is the wide range of severity those affected seem to expe ...
AUG 11, 2020
Immunology
Study Reveals the Two Sides of an Immune Molecule
AUG 11, 2020
Study Reveals the Two Sides of an Immune Molecule
Scientists have discovered a key protein that regulates the immune system to fight off infections. Fascinatingly, the pr ...
OCT 01, 2020
Drug Discovery & Development
HPV Vaccine Protects Against Cervical Cancer, Large Study Finds
OCT 01, 2020
HPV Vaccine Protects Against Cervical Cancer, Large Study Finds
It has been known for some time that the HPV vaccine protects against human papillomavirus infection, genital warts, and ...
OCT 06, 2020
Drug Discovery & Development
New Immunotherapy Drug Effective Against Lung Cancer
OCT 06, 2020
New Immunotherapy Drug Effective Against Lung Cancer
A new study has confirmed that Tecentriq, an immunotherapy drug, improves survival rates among those with newly diagnose ...
OCT 12, 2020
Drug Discovery & Development
Researchers Solve Key Problem for Cancer Immunotherapy
OCT 12, 2020
Researchers Solve Key Problem for Cancer Immunotherapy
Cancer immunotherapies are becoming increasingly promising as a standard-of-care treatment. However, despite their promi ...
NOV 10, 2020
Neuroscience
Nanoparticles Pass the Blood-Brain Barrier in Zebrafish
NOV 10, 2020
Nanoparticles Pass the Blood-Brain Barrier in Zebrafish
Video:  Explains the challenges of delivering medicine to the brain, and possibly tools to pass the blood-brain bar ...
Loading Comments...