JAN 26, 2016 11:03 AM PST

Protective Autophagy in Regulatory T Cells

WRITTEN BY: Kara Marker
Acting alongside T helper cells, the all-stars of adaptive immunity, regulatory T cells work to suppress any “potentially deleterious” T helper cell activities that could lead to an autoimmune disorder (Scandinavian Journal of Immunology). T helper cells activate effector immune cells to attack invading pathogens and abnormally growing cells, which is a good thing. However, these lymphocytes can also make mistakes and wrongly target the body’s own cells. This is where regulatory T cells come into play, protecting the body by maintaining self-tolerance and preventing allergic responses.
 
With regulatory T cells at the ready to keep the body’s immune system from attacking itself, other immune cells are free to concentrate on attacking pathogens and killing cancerous cells. However, what happens when the regulatory T cells themselves need protecting?
 
A regulatory T cell (blue) interacting with bacteria (green)

A new study published in Nature Immunology by scientists from St. Jude Children’s Research Hospital investigated the protective mechanisms of regulatory T cells. Like a doctor who helps treat and prevent other people from getting sick, regulatory T cells also depend on certain cellular processes to continue normal function, similar to how doctors wear masks, gloves, and wash their hands when with a patient.
 
"Regulatory T cells are very specialized cells that require activation to perform their function in curtailing undesirable immune responses," said study leader Hongbo Chi, PhD.
 
After being activated, a process called “autophagy” relieves regulatory T cells of “molecular garbage” that piles up in the cell. Imaging studies done from colon cancer cells in Chi’s experiments proved the necessity of autophagy for regulatory T cell function. Next, the team looked at mice models of disease to see how organisms respond as a whole when the process of autophagy was disturbed. Key genes for autophagy, Atg5 and Atg7, were deleted, and they saw regulatory T cell malfunction as expected in these knock-out mice.
 
Activated regulatory T cells without functional autophagy experienced excessive cell death and a “loss of identity,” a phrase Chi used to describe their non-regulatory T cell action that occurred without autophagy. Thus, after losing their traditional abilities and gaining new ones, the regulatory T cell population in the knock-out mice were actually able to clear tumors better than control mice.
 
"From this perspective, targeting autophagy could act in synergy with strategies that block autophagy in tumor cells for added benefits in cancer therapy," Chi said.
 
He and his team plan to study other tumor cell types with autophagy inhibition in regulatory T cells, focusing on the “detailed biochemical mechanisms” behind the protective mechanism of autophagy for regulatory T cells. The potential for new immunotherapies for cancer to be derived from this research is great, but Chi and his team have to ensure that upsetting the protective function of regulatory T cells does not create dangerous backlash for cancer patients.
 

Source: St. Jude Children’s Research Hospital
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
NOV 11, 2019
Neuroscience
NOV 11, 2019
Suicidal Mitochondria Responsible for ALS
Scientists at Northwestern University have dicovered a new mechanism in the brain that may be responsable for the early stages of neurodegeneration seen in...
NOV 29, 2019
Immunology
NOV 29, 2019
Protecting Killer Immune Cells from Themselves
Destroying human cells compromised by viruses and cancer is the name of the game for so-called “killer” cells of the immune system. They employ...
DEC 04, 2019
Neuroscience
DEC 04, 2019
Antibiotic Usage May Cause Parkinson's, Study Finds
A study from Helsinki University Hospital, Finland suggests that excessive usage of certain antibiotics may increase one’s risk of developing Parkins...
DEC 17, 2019
Immunology
DEC 17, 2019
Increased Belly Fat with Aging Linked to Reduced Mental Flexibility
Did you ever consider that your brain can flex similarly to the way your biceps can? Sure, brain flexing is more abstract and less literal, but the concept...
JAN 08, 2020
Cell & Molecular Biology
JAN 08, 2020
In a First, Scientists Generate Early Human Immune Cells in the Lab
Now we know more about the early stages of the human immune system....
JAN 16, 2020
Health & Medicine
JAN 16, 2020
Babies in Africa Receive World's First Malaria Vaccine
Would you accept a vaccine that was only 40% effective? For those at risk of malaria, the answer is likely a resounding, "yes!" According to the...
Loading Comments...