JUL 13, 2016 8:33 AM PDT

Itaconate Metabolite Hijacks Macrophage Activation

WRITTEN BY: Kara Marker
Macrophages of the immune system are vital for mounting a quick and directed attack on invading pathogens especially along the inflammatory pathway, but often overzealous macrophages can go a bit too far and cause damage with excessive inflammation. Numerous immune suppression therapies exist on the market, but often they can render a person vulnerable to infection while trying to relieve an inflammatory disorder. A new option has surfaced in a new study: a natural metabolite that controls macrophage activity.
 Draw-bridge depicts Itaconate disrupting the TCA cycle flow - Credit: Aleksandra Ziminova
A collaboration of scientists from Washington University, ITMO University, McGill University, and the Max Planck Institute of Immunobiology and Epigenetics is behind the potential new option for suppressing inflammation: itaconate. Their findings were recently published in the journal Cell Metabolism.
 
Macrophages transition between three distinct stages during their lifetime: neutral (M0), pro-inflammatory (M1), and anti-inflammatory (M2). As expected, M1 macrophages are the type that arrives first at the scene of the crime, promoting inflammation to begin the immune attack on whatever pathogen has invaded the body. When a M1 macrophage becomes “overly diligent” though, numerous pathologies can result: cardiac ischemia, metabolic disorders, and even autoimmune diseases.
 
Too much inflammation is dangerous and leads to these diseases because of the absorption of energy resources required to keep the inflammatory pathway up and running. The new study looked at the transition process of macrophages between states, especially between their inactive and pro-inflammatory state. This is where itaconate comes into the picture, a natural metabolite released by macrophages whose role scientists have never quite understood – until now.
 
The researchers found that there seems to be a defined limit of the amount of itaconate that can be produced during the M0 – M1 transition, and as itaconate levels grow closer to the limit, macrophage activation to its pro-inflammatory state is designed to fail. “Itaconate sets the bar controlling M1 macrophage formation, said Alexey Sergushichev, one of the study’s authors.
 
Itaconate’s role within macrophage activation was finally realized when the researchers connected the metabolite to the bodily processes for producing energy from glucose oxidation: cellular respiration and the tricarboxylic acid cycle. An enzyme called succinate dehydrogenase (SDH) provides a component called fumarate to the tricarboxylic acid cycle. This is where the researchers saw itaconate interfering with energy production: itaconate blocks the enzyme entirely.
 
With the tricarboxylic acid cycle and cellular respiration halted without a necessary enzyme, macrophage activation to a pro-inflammatory state fails. In this way, itaconate acts as an anti-inflammatory agent, while it also acts as an antioxidant by blocking glucose oxidation.
 
The successful breakdown of itaconate and its role in macrophage activation is important for understanding how inflammatory diseases develop, as well as for how to treat them. Sergushichev believes that this new insight will lead to the ability of scientists to “artificially manipulate the transition of macrophages from M0 to M1, meaning the possibility of restraining inflammations.”
 


Sources: ITMO University, Current Opinion in Plant Biology
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
APR 02, 2020
Immunology
APR 02, 2020
Potential New COVID-19 Vaccine is Delivered by Patch
The coronavirus pandemic caused by SARS-CoV-2 is demanding the world's immediate attention.
APR 26, 2020
Microbiology
APR 26, 2020
Researchers Design A Polio Vaccine That Won't Cause Polio
Sustained, intense efforts to vaccinate were getting the world very close to eradicating polio, but the vaccine itself o ...
MAY 19, 2020
Drug Discovery & Development
MAY 19, 2020
COVID-19 Vaccine On Track for Late 2020
Moderna, a biotechnology company based in Massachusetts, has released information on its vaccine against COVID-19 from i ...
JUN 16, 2020
Immunology
JUN 16, 2020
Stronger Skeletal Muscles May Reflect A Sturdy Immune System
Individuals struggling to recover from chronic infections and cancer usually experience reduced immune strength and weig ...
JUN 25, 2020
Immunology
JUN 25, 2020
The Protein That Orchestrates Cells' Dance of Death
When cells become diseased or infected, a “suicide switch” is triggered, preventing neighboring cells from b ...
JUN 29, 2020
Microbiology
JUN 29, 2020
Childhood Vaccine May Help Prevent Severe COVID-19 Cases
Vaccines that contain live attenuated viruses may be giving people some protection from serious cases of COVID-19 that i ...
Loading Comments...