JUL 19, 2016 1:39 PM PDT

No Antibiotics? No Problem.

WRITTEN BY: Kara Marker
Thousands of deaths in patients with hepatic cirrhosis result from bacterial infections that individuals with healthy immune systems could easily clear on their own. Without quick treatments of antibiotics, these people can quickly die from a treatable illness. Scientists knew that hepatic cirrhosis patients had compromised immune systems, but they couldn’t figure out why or how to repair the damage - until now.
Image: Medical News Today 
Patients with hepatic cirrhosis have damaged livers that are slowly but surely waning, a condition that results from alcohol abuse, fatty liver hepatitis, or chronic viral hepatitis. While it can take years for the liver to fail completely, without proper intervention or, in the worst case scenario a liver transplant, the disease is fatal.
 
In a new study from the University of Bonn and TU Munich, researchers might have finally found the way to prevent unnecessary deaths due to complications from hepatic cirrhosis. “One-third of the fatal cases of hepatic cirrhosis are attributable to bacterial infections,” said Dr. Jonel Trebicka, an experienced liver cirrhosis researcher. So what is stopping the immune system from handling the problem like it is designed to do?
 
As hepatic cirrhosis takes its toll on the liver, cells die and are replaced with connective scar tissue. The more liver cells that are replaced by scar tissue, the less blood is able to travel through hepatic blood vessels to the rest of the body. Blockages lead to elevated blood pressure in intestinal blood vessels, intestinal bacteria leak into the blood, and they travel to the liver, causing an abnormal immune imbalance. While previous findings brought this relationship to light, scientists still couldn’t make the connection between gut bacteria in the liver and the impaired immune function.
Damaged liver tissue due to cirrhosis | Image: Yale 
In the first stages of the study, researchers looked at mice with induced conditions of liver cirrhosis, first noticing that a large amount of type-1 interferon was regularly being produced by macrophages and monocytes in the liver, two immune cells vital for defense against infection.
 
Type-1 interferons are a type of chemical messenger called cytokines that have immunoregulatory roles within the response of T cells and Natural Killer cells to an incoming infection. Once the researchers introduced an infectious bacterium called Listeria into the bloodstream of hepatic cirrhosis mice subjects, the production of type-1 interferon skyrocketed.
 
The large influx of type-1 interferon led to the release of another immunoregulatory factor called interleukin-10, which ultimately was to blame for the damage done to anti-bacterial functions of the macrophages. The infection ran rampant and killed the subjects.
 
The researchers performed the same experiment in human monocytes isolated from the blood of hepatic cirrhosis patients, achieving almost identical results. University Hospital Bonn researcher Dr. Zeinab Abdullah said that the study identified the “blind spot of the immune system that is responsible for the failure of the immune response to bacterial infections.”
 
 
The battle may be won, but the war isn’t over. In order to capitalize on the new understanding of the role of type-1 interferon and interleukin-10 in the fatal bacterial infections of hepatic cirrhosis patients, scientists must figure out how to prevent overproduction of these cytokines without disturbing the rest of the immune equilibrium that relies on these signals for regular function.
 
Researchers hope that by “reinvigorating” the immune system, patients with hepatic cirrhosis will be safe from fatal bacterial infections.
 
The study was recently published in the journal Gut.
 

 
Sources: University of Bonn, PLOS Pathogens, National Institute of Diabetes and Digestive and Kidney Diseases
 
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
JAN 20, 2021
Immunology
Gut Bacteria's Poison Arrows Exposed
JAN 20, 2021
Gut Bacteria's Poison Arrows Exposed
Bacteria armed with toxin bombs and excruciating abdominal pains caused by raging inflammation in the gut. While the cau ...
FEB 02, 2021
Immunology
Tumors Under Seige by Cancer-Killing Salmonella
FEB 02, 2021
Tumors Under Seige by Cancer-Killing Salmonella
Salmonella is a genus of rod-shaped bacteria, often given a bad rap thanks to its association with food poisoning. But c ...
FEB 03, 2021
Immunology
Severely Ill COVID-19 Patients may have Longer Immunity Against the Virus
FEB 03, 2021
Severely Ill COVID-19 Patients may have Longer Immunity Against the Virus
Researchers are still studying how long a person can stay immune against COVID-19 following infection. A new study by a ...
MAR 07, 2021
Genetics & Genomics
Tuberculosis Influenced the Human Genome
MAR 07, 2021
Tuberculosis Influenced the Human Genome
Throughout human history, our species has come into contact with both harmless and infectious microbes that have changed ...
MAR 30, 2021
Immunology
Single-Cell Technology Exposes Melanoma's Weak Spot
MAR 30, 2021
Single-Cell Technology Exposes Melanoma's Weak Spot
The immune system encompasses a powerful arsenal of weapons against pathogenic threats. But what stops healthy tissues i ...
APR 16, 2021
Microbiology
A New Kind of COVID-19 Vaccine
APR 16, 2021
A New Kind of COVID-19 Vaccine
The current COVID-19 vaccines by Pfizer/BioNTech and Modern are based on messenger RNA, which cells use to make proteins ...
Loading Comments...