AUG 02, 2016 7:27 PM PDT

Immune System Error Creates Vulnerability to Sepsis

WRITTEN BY: Kara Marker
The immune system is usually equipped to handle most bacterial infections, but certain cases of severe infection can leave a person extremely vulnerable when certain blood cells fail to be continuously produced. In a new study from Indiana University, researchers looked at the errors that occur in a molecular signaling system to see what goes wrong.
Credit: rjjaramillo.wordpress.com
“Sepsis” describes the immune response to a severe bacterial infection, hospitalizations for which have more than doubled between 2000 and 2008. With an alarming mortality rate between 40 and 60 percent, scientists are largely invested in figuring out what pushes the immune system into an error-prone emergency mode where the activity of both immune cells and blood-producing, bone marrow-originating hematopoietic stem cells are inhibited. 

“More research is needed to better understand this process and develop better, and much needed, therapeutic strategies for sepsis,” said Nadia Carlesso, MD, PhD from the Indiana University School of Medicine. 

In a unique study that focused on the early stages of acute infection rather that late stages of sepsis, researchers looked at the molecular signaling system in mice models of sepsis thought to be responsible for suppression of key cells. If scientists can determine if the acute infection stage is where the system starts to err, intervention at this stage could potentially prevent a severe septic response from occurring in the body. 

First, the researchers discovered the details of the relationship between immune cells, hematopoietic stem cells, and the molecular signaling system during sepsis. For whatever reason, errors in signaling led to hematopoietic stem cells failing to produce mature neutrophils, immune cells vital for the clearance of bacteria from the body. 

Based on this finding, the researchers then studied the role of another player in the immune system called toll-like receptor 4 (TLR4). TLRs are charged with the sentinel duty of detecting invading bacteria and sending signals to warn the immune system. As part of a healthy immune response, TLR4 activates two signaling pathways that lead to the production of neutrophils during an infection. During massive bacterial infections, two different molecules downstream of TLR4 prevent proper signaling, leaving TLR4 and the associated molecules responsible for inhibiting neutrophil production as well as damage to hematopoietic stem cells in the bone marrow. 

What scientists learned from this study and what we can take away is this: the immune system is far from perfect. Even so, identifying and understanding when and how it falls short allows researchers to step in and improve the natural process with tools in modern medicine.

This study was published in the journal Stem Cell Reports.
 


Sources: Indiana University
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
FEB 01, 2021
Microbiology
A Potential Leptospirosis Vaccine is Created
FEB 01, 2021
A Potential Leptospirosis Vaccine is Created
Spirochetes are a type of free-living, spiral-shaped bacteria, some of which are harmless and others that can cause dise ...
APR 11, 2021
Genetics & Genomics
Trial Shows Personalized Cancer Vaccines are Safe
APR 11, 2021
Trial Shows Personalized Cancer Vaccines are Safe
Vaccines are mostly known as tools to prevent illness. But cancer vaccines are a bit different, and aim to treat existin ...
APR 21, 2021
Immunology
Human T Cells Can't Recognize COVID Mutants
APR 21, 2021
Human T Cells Can't Recognize COVID Mutants
Genetic variants of the SARS-CoV-2 virus have emerged and tightened their grip on global communities as the pandemic rag ...
APR 28, 2021
Cell & Molecular Biology
Learning More About the Sugars That Mediate Immune Interactions
APR 28, 2021
Learning More About the Sugars That Mediate Immune Interactions
Sugar is something sweet to add to your food, but just like fat, different types of sugars play important roles in biolo ...
MAY 10, 2021
Coronavirus
Researchers Create a Vaccine For Multiple SARS Viruses, Including COVID-19 & Variants
MAY 10, 2021
Researchers Create a Vaccine For Multiple SARS Viruses, Including COVID-19 & Variants
The pandemic virus SARS-CoV-2 has changed the world in devastating ways, taking hundreds of thousands of lives & new var ...
MAY 22, 2021
Drug Discovery & Development
Drug Combo Treats 86% of Patients with Gout
MAY 22, 2021
Drug Combo Treats 86% of Patients with Gout
Researchers at the University of Michigan have found that a combination of two drugs is twice as effective as current tr ...
Loading Comments...