AUG 02, 2016 07:27 PM PDT

Immune System Error Creates Vulnerability to Sepsis

WRITTEN BY: Kara Marker
The immune system is usually equipped to handle most bacterial infections, but certain cases of severe infection can leave a person extremely vulnerable when certain blood cells fail to be continuously produced. In a new study from Indiana University, researchers looked at the errors that occur in a molecular signaling system to see what goes wrong.
Credit: rjjaramillo.wordpress.com
“Sepsis” describes the immune response to a severe bacterial infection, hospitalizations for which have more than doubled between 2000 and 2008. With an alarming mortality rate between 40 and 60 percent, scientists are largely invested in figuring out what pushes the immune system into an error-prone emergency mode where the activity of both immune cells and blood-producing, bone marrow-originating hematopoietic stem cells are inhibited. 

“More research is needed to better understand this process and develop better, and much needed, therapeutic strategies for sepsis,” said Nadia Carlesso, MD, PhD from the Indiana University School of Medicine. 

In a unique study that focused on the early stages of acute infection rather that late stages of sepsis, researchers looked at the molecular signaling system in mice models of sepsis thought to be responsible for suppression of key cells. If scientists can determine if the acute infection stage is where the system starts to err, intervention at this stage could potentially prevent a severe septic response from occurring in the body. 

First, the researchers discovered the details of the relationship between immune cells, hematopoietic stem cells, and the molecular signaling system during sepsis. For whatever reason, errors in signaling led to hematopoietic stem cells failing to produce mature neutrophils, immune cells vital for the clearance of bacteria from the body. 

Based on this finding, the researchers then studied the role of another player in the immune system called toll-like receptor 4 (TLR4). TLRs are charged with the sentinel duty of detecting invading bacteria and sending signals to warn the immune system. As part of a healthy immune response, TLR4 activates two signaling pathways that lead to the production of neutrophils during an infection. During massive bacterial infections, two different molecules downstream of TLR4 prevent proper signaling, leaving TLR4 and the associated molecules responsible for inhibiting neutrophil production as well as damage to hematopoietic stem cells in the bone marrow. 

What scientists learned from this study and what we can take away is this: the immune system is far from perfect. Even so, identifying and understanding when and how it falls short allows researchers to step in and improve the natural process with tools in modern medicine.

This study was published in the journal Stem Cell Reports.
 


Sources: Indiana University
 
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
JUN 04, 2018
Immunology
JUN 04, 2018
Asthma and Flu Make A Deadly Combination
When someone with a cold or the flu also has an asthma attack, the situation can become life-threatening very quickly. From the University of Montreal, sci...
JUN 08, 2018
Cardiology
JUN 08, 2018
Interfering with Inflammatory Signals to Treat Arrhythmia
Part of the immune system has now been implicated in the development of atrial fibrillation (AF), the most common heart arrhythmia that leads to stroke, bl...
JUN 27, 2018
Immunology
JUN 27, 2018
Immune Cells Responsible for Chemo-induced Diarrhea
While studying specific immune cells in the context of chronic itching in the skin, two Washington University School of Medicine scientists discovered that...
JUN 30, 2018
Immunology
JUN 30, 2018
CD4 T Cells Responsible for Inflammatory Bowel Disease
A specific subset of immune cells could be targeted to better treat inflammatory bowel disease (IBD). A new University of Alabama at Birmingham study point...
AUG 31, 2018
Immunology
AUG 31, 2018
B Cells Control Connective Tissue Disorder Scleroderma
Effector and Regulatory B cells play reciprocal role in pathogenesis of scleroderma....
SEP 11, 2018
Immunology
SEP 11, 2018
Oops! I Broke My DNA
Innate Immune System, DNA Damage and Repair...
Loading Comments...