NOV 02, 2016 2:38 PM PDT

Nervous System Control of T and B Lymphocytes

WRITTEN BY: Kara Marker
When humans go to sleep, their immune cells come out to play. A new study from the WPI Immunology Frontier Research Center at Osaka University in Japan now shows how T and B cells migrate between the lymph nodes and the bloodstream at specific times in response to nervous system signals that come through the lymph nodes.
A microscopic image of a mouse lymph node.
The Osaka University researchers conducted their study with mice, who are active at night and sleep mostly during the day. They saw that T and B cell activity in the bloodstream spiked during the day and decreased at night, where most of the cells spent their time in the lymph nodes receiving their “briefing” of any newly-encountered antigens.

This briefing is facilitated by specially-designed antigen-presenting cells (APCs) that reside in the lymph nodes. If APCs present an antigen that T or B cells recognize as foreign or dangerous, the lymphocytes reenter the bloodstream with a purpose. For T cells, it’s the cell-mediated response involving helper and effector cells that target the foreign invader directly. For B cells, it’s the humoral response that produces antibodies specifically designed to hunt, flag down, and neutralize invaders.

Researchers saw a stronger immune response in mice that were injected with antigens at night compared to those injected during the day, a response thought to be because a large majority of the body’s T and B cells were already congregated in the lymph nodes where antigen-presenting cells could turn around and consult the T and B cells concerning the injected antigens.

The tendency for T and B cells to be in the bloodstream or the lymph nodes at specific times was found to be controlled by a neurotransmitter called noradrenaline, which is released from the adrenergic nerves that supply the lymph node organs with nerves. Noradrenaline activates the Beta-2-adrenergic receptor molecules on the surface of T and B cells, and this activation prevents the cells from leaving the lymph nodes into the bloodstream.

For mice, more noradrenaline is produced at night, causing the congregation of T and B cells in the lymph nodes. Because mice are nocturnal animals, Osaka University scientists rationalized that the period of maximized immune protection for mice via T and B cells rendezvousing in the lymph nodes would be at night. The T and B cell schedule would be different for humans since they are active mostly during the day, where they are more likely to encounter antigens.

The connection between the adrenergic nervous system and the immune system presented in this study’s finding is unparalleled, and future studies focusing on human T and B cell cycles could lend more insight into how the human body builds a strong immune defense.

The present study from Osaka University was published in The Journal of Experimental Medicine.
 


Sources: Rockefeller University Press, WPI Immunology Frontier Research Center, Osaka University
Image: Kazuhiro Suzuki
About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
APR 13, 2020
Drug Discovery & Development
Are COVID-19 Antibody Tests a Back-to-Work Pass?
APR 13, 2020
Are COVID-19 Antibody Tests a Back-to-Work Pass?
Although treatments and vaccines against COVID-19 may still be months away, antibody tests are becoming more widespread. ...
APR 16, 2020
Health & Medicine
Structural Basis of Receptor Recognition by SARS-CoV-2
APR 16, 2020
Structural Basis of Receptor Recognition by SARS-CoV-2
As mortality and infection rates rise globally, it appears that SARS-CoV-2, the virus responsible for the COVID-19 pande ...
APR 17, 2020
Drug Discovery & Development
Gilead's Remdesivir Trial Sees Rapid Recoveries from COVID-19
APR 17, 2020
Gilead's Remdesivir Trial Sees Rapid Recoveries from COVID-19
Early results from a Chicago hospital treating patients with Gilead Sciences’ antiviral drug remdesivir for severe ...
APR 22, 2020
Drug Discovery & Development
Only 3% of COVID-19 Antibody Tests Approved by FDA
APR 22, 2020
Only 3% of COVID-19 Antibody Tests Approved by FDA
So far, only 3% of at least 90 COVID-19 antibody tests in the US have been approved by the Food and Drug Administration ...
JUN 15, 2020
Drug Discovery & Development
New Antibiotic 'Irresistin' Defeats All Resistant Bacteria
JUN 15, 2020
New Antibiotic 'Irresistin' Defeats All Resistant Bacteria
Researchers from Princeton University have identified a compound capable of killing both Gram-positive and Gram-negative ...
JUL 08, 2020
Immunology
Scientists Use Genetics to Control Regulatory T Cells
JUL 08, 2020
Scientists Use Genetics to Control Regulatory T Cells
The ability to control regulatory T cells of the immune system has long been sought out by scientists, especially those ...
Loading Comments...