JAN 02, 2017 08:03 PM PST

Cancer Cells Hijack Immune Cells For Protection

WRITTEN BY: Kara Marker

Cancer cells have a tendency of hijacking human immune cells in an effort to avoid destruction by the immune system, but scientists are quickly responding to these defense mechanisms. A recent study resulted in unveiling of novel cancer mechanisms that scientists are hopeful will soon lead to new, more successful immunotherapy technologies.

Source: CONEYL JAY/GETTY IMAGES

Myeloid-derived suppressor cells (MDSCs) are the unlucky immune cells that fall under the spell of some types of cancer. Tumor cells actually trigger the massive expansion of the MDSC population, making high levels of these immune cells found in the bloodstream a marker of a poor prognosis for cancer patients.

The hijacking works for cancer cells because MDSCs can prevent T lymphocytes from entering the lymph nodes, where these effector cells of the immune system are supposed to receive their “training” for the specific cancer mission at hand. MDSCs do so by removing an important molecule from the T cell surface: L-selectin. The molecule is critical for the transportation of T cells to the lymph nodes. No L-selectin on the T cell surface, and the immune system is left severely impaired in the fight against cancer.

In their study observing T cells, a team from the Roswell Park Cancer Institute saw that MDSCs can act directly on T cells, a finding that was particularly surprising due to the rapid movement of cells circulating in blood.

"Because these immune-suppressive myeloid cells were found to act at long distances to prevent the activation of the T lymphocyte response to tumors, this research reinforces the important message that routine profiling of the cellular constituents within tissues does not always provide the whole picture in cancer," said explained first author Amy Ku, an MD/PhD student at the Roswell Park Cancer Institute.

Another surprising finding was that MDSCs act on B cells as well; this was the first time that B cells had be identified in addition to T cells as a target of tumor-controlled MDSCs.

In this scenario, the best answer might not be using chemicals to directly target the tumor cells, although that might be a supplementary option. The solution is instead to prevent tumor cells from manipulating MDSCs to inhibit the immune system in the first place, by “healing” the compromised T cells in some way and returning them to the circulation and the fight against the growing tumor.

“These new insights may allow us to address a pressing challenge faced by physicians: how to determine which cancer patients are most likely to benefit from T lymphocyte-based immune-therapeutics,” explained leader of the study and senior author Sharon Evans, PhD.

Evans’ study was recently published in the journal eLife.

Source: Roswell Park Cancer Institute

 

 

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
JUL 06, 2018
Cell & Molecular Biology
JUL 06, 2018
Small Molecules Found to Dial Down Autoimmunity
Scientists have now identified two combinations of small molecules that tamp down a protein called STING....
JUL 10, 2018
Health & Medicine
JUL 10, 2018
Towards a Universal Flu Vaccine
Each year, depending on the weather and other factors, flu season shows up and sometimes it’s really bad and other times it’s not as widespread...
JUL 16, 2018
Immunology
JUL 16, 2018
T cells and the Need for Speed
A recent study has shown that T cell receptors are dispersed across the T cell surface, as opposed to clustered, to allow for a rapid immune reaction....
AUG 08, 2018
Immunology
AUG 08, 2018
Doxorubicin Causes Heart Toxicity by Immune System Disruption
Chemotherapy drug Doxorubicin disrupts metabolism that controls immune responses in the heart leading to heart toxicity....
SEP 04, 2018
Immunology
SEP 04, 2018
Development of Damaging Immune Cells in Tuberculosis Infection
Development of damaging white blood cells occurs during Tuberculosis infection leading to a maladaptive immune response....
SEP 11, 2018
Cannabis Sciences
SEP 11, 2018
The Potential Anti-cancer Effects of Cannabinoids
They're known for helping to reduce the impact of cancer drug side effects, but it's possible that cannabinoids themselves are cancer fighters....
Loading Comments...