MAR 29, 2017 2:13 PM PDT

Immune Stem Cells Treat the Most Common Type of Liver Cancer

WRITTEN BY: Kara Marker

There are more multiple causes of hepatocellular carcinoma (HCC) and more than five approaches to treating it. Well, add one more to the list. Combining stem cell science and immunotherapy techniques, Kumamoto University scientists might be on the brink of the most effective treatment yet, for a condition that is the most common form of liver cancer and which has an unfortunately high mortality rate.

An illustration of immune stem cells. Credit: SEPCELL

Several conditions increase a person’s risk of developing HCC: hepatitis B, hepatitis C, cirrhosis, obesity, diabetes, iron buildup in the liver, exposure to aflatoxins produced by fungi on some types of food. Radiation, chemotherapy, cryo- or radiofrequency ablation, resection, and liver transplants are all options doctors might consider to treat a person with HCC, but the five-year survival rate is still less than 50 percent, and that’s just for localized cases of cancer, where the liver tumors have not yet metastasized.

A new study, published in the Journal of Hepato-Biliary-Pancreatic Sciences, might be the beginning of a completely new option to improve the five-year survival rate for HCC.

Induced pluripotent stem cells (iPSCs) are cells that are useful in experimental medicine because of their innate ability to become multiple cell types. In the present study, researchers designed immune cells derived from iPSCs, specifically immune cells that produce a protein called interferon-beta (INF-B).

INF-B is recruited by the immune system for two reasons: antiviral abilities and two different types of antitumor activity. Despite their antitumor activity, INF-B proteins cause several problems when implemented into anti-cancer therapies, including accelerated inactivation, poor tissue penetrations, and toxicity.

Kumamoto researchers saw a way around these roadblocks, developing a method to design cells that provide all of the benefits of a INF-B anti-cancer approach without all of the problems and negative side effects: iPSC-derived proliferating myelomonocytic cells (iPS-ML cells).

iPS-ML cell activity resembles the activity of another type of immune cell, tumor-associated macrophages (TAMs). Along with regulatory T cells, TAMs are the primary tumor-promoting immune cells in the tumor microenvironment. With iPS-ML cells appearing to be also capable of promoting tumors, Kumomoto researchers quickly realized them to be the perfect vessel for “sneaking” INF-B into the the tumor microenvironment.

The image above is adapted from the Kumamoto University study results: (A) Bio-imaging analysis to evaluate the therapeutic effect of iPS-ML producing IFN-β on metastatic liver cancer. (B) Quantification of the image data shown in A. (C) Histological data indicating migration of iPS-ML (PKH26, red) into intrahepatic tumor tissues (GFP, green). Credit: Associate Professor Satoru Senju

 

A mouse study quickly confirmed the potential of iPS-ML/INF-B cells. They found that mice livers with tumors had higher levels of IFN-B than livers without tumors. This is because iPS-ML/IFN-B cells did not penetrate not-tumorous livers, instead they remained on the surface of the healthy organs.

Additionally, they found that IFN-B levels in liver tumors one to three days after the initial injection of iPS-ML/INF-B were high enough to inhibit proliferation or even cause death of tumor cells.

“iPS-cell derived, IFN-β expressing myeloid cells should be beneficial for many cancer patients," said research leader Dr. Satoru Senju. "If it is determined to be safe for human use, this technology has the potential to slow cancer progression and increase survival rates.”

Sources: American Cancer Society, Cellular and Molecular Immunology, Kumamoto University

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
AUG 26, 2021
Immunology
Sugar-Coating Organs Stops Them From Getting Rejected
AUG 26, 2021
Sugar-Coating Organs Stops Them From Getting Rejected
Once organ failure patients receive the gift of a transplant, they face a life-long threat of immune rejection. Their im ...
SEP 07, 2021
Health & Medicine
Vaccines- a Long History of Cost-Benefit Analysis
SEP 07, 2021
Vaccines- a Long History of Cost-Benefit Analysis
Vaccination and new treatments for diseases have remained topics of skepticism since their inception. When it came to an ...
NOV 09, 2021
Immunology
Wikipedia, but Make It Immune Cells
NOV 09, 2021
Wikipedia, but Make It Immune Cells
Scientists have established the first searchable database of complex immune data, providing the foundations for a new er ...
NOV 08, 2021
Health & Medicine
COVID-19 Vaccines Approved for Children 5-11
NOV 08, 2021
COVID-19 Vaccines Approved for Children 5-11
It has been a long time coming. COVID-19 vaccinations from Pfizer, Moderna, and Johnson and Johnson were offered to all ...
NOV 11, 2021
Cell & Molecular Biology
Why Arthritis Tends to Affect the Same Joints Repeatedly
NOV 11, 2021
Why Arthritis Tends to Affect the Same Joints Repeatedly
While arthritis may not cause pain all the time, when it flares, it tends to recur in the same joints. This can create s ...
DEC 02, 2021
Immunology
New mRNA Vaccine Stops Ticks, Prevents Lyme Disease
DEC 02, 2021
New mRNA Vaccine Stops Ticks, Prevents Lyme Disease
Yale University researchers have developed an mRNA vaccine against ticks that could help prevent Lyme disease. This is a ...
Loading Comments...