NOV 21, 2017 7:02 AM PST

"Beneficial Cell Suicide" Fights Pathogens in the Bloodstream

WRITTEN BY: Kara Marker

A new discovery of how specialized immune cells carry out their last resort effort to kill pathogens could help scientists improve and regulate a variety of immune responses. In the present study, published in the journal Developmental Cell, scientists watch how immune cells respond to a fungal infection in the context of mice models.

This photograph shows bacteria (Shigella flexneri) trapped in a NET. The mesh-like structure of the NET is visible between two still-intact neutrophils. Credit: Volker Brinkmann

Neutrophils are cells of the innate immune system, which means that they respond first, they respond quickly, and they respond to everything. Usually the first cells to arrive at the site of infection, neutrophils respond to chemical messengers released by both the invading pathogens and the infected and dying cells. In the present study, researchers analyze neutrophil extracellular traps (NETs), where neutrophils release bundles of processed chromatin as a tactic for containing pathogenic invasions.

First author Borko Amulic, PhD, calls this response “beneficial cell suicide.”

"When neutrophils get overwhelmed, when they can no longer deal with a microbial threat by just engulfing it, that's when the NETs are released,” Amulic explained.

Aside from releasing NETs, neutrophils participate in the immune response by releasing their own chemical messengers to recruit more cells to the site and by phagocytosis, the process of engulfing and digesting pathogens.

The new study aimed to examine how NETs are released and how they stop a fungal infection. Researchers found that after NETs are released, the neutrophil “anchors itself in the tissue and breaks down its nuclear envelope.” Interestingly, cells usually only do so in the moments right before they divide, which lead researchers to believe that neutrophils might be using the same cell cycle proteins involved in cell division to release NETs.

Researchers tested their theory in a mice model where neutrophils were incapable of producing cell cycle proteins. Subsequently, these neutrophils were also barred from releasing NETs and were quickly overcome by fungal infections.

The relationship between NET release and cell cycle proteins was confirmed in humans when researchers observed brains under attack by fungal infections, seeing neutrophils using cell cycle proteins.

"The ultimate goal for this research is to interfere clinically, either when too few or too many NETs are being produced," says Amulic. "Also, this is just a really fascinating cell biological phenomenon."

Sources: Nature Reviews, The Journal of Cell Biology, Cell Press

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
APR 13, 2020
Immunology
Macrophages: An Origin Story
APR 13, 2020
Macrophages: An Origin Story
Macrophages are well-known defense cells of the immune system, responsible for utilizing the cellular breakdown process ...
APR 20, 2020
Immunology
Making Sense of the T Cell Response Spectrum
APR 20, 2020
Making Sense of the T Cell Response Spectrum
T cells go through a sort of “training” process throughout life, and scientists recently discovered that the ...
JUN 14, 2020
Chemistry & Physics
Why Are There So Few Black People in STEM?
JUN 14, 2020
Why Are There So Few Black People in STEM?
On June 10th, 2020, thousands of STEM scientists and organizations around the world went on strike to protest systemic r ...
JUN 25, 2020
Immunology
The Protein That Orchestrates Cells' Dance of Death
JUN 25, 2020
The Protein That Orchestrates Cells' Dance of Death
When cells become diseased or infected, a “suicide switch” is triggered, preventing neighboring cells from b ...
JUL 13, 2020
Genetics & Genomics
New Therapeutic Targets For Lupus Are Identified
JUL 13, 2020
New Therapeutic Targets For Lupus Are Identified
Advances in computational and genetic technologies have enabled scientists to search the genome to look for places where ...
JUL 27, 2020
Cell & Molecular Biology
White Blood Cells Are Essential to the Developing Brain
JUL 27, 2020
White Blood Cells Are Essential to the Developing Brain
The brain is protected by a protective shield called the blood-brain barrier, which only allows certain things to pass t ...
Loading Comments...