MAY 02, 2018 12:17 PM PDT

Photographing the Measles Virus

WRITTEN BY: Kara Marker

The measles virus was caught leaving infected cells by the scientific paparazzi, that is, experts from Emory Health Sciences using cryo-electron tomography (cryo-ET). In their new study, researchers show how obtaining images of the measles virus at this stage of infection will help them understand better the pathogen’s structure and function.

A thin-section transmission electron micrograph revealed the ultrastructural appearance of a single virus particle of measles virus. Credit: CDC Public Health Image Library

Similar to a CT scan, cryo-ET is an imaging technique that helped Emory scientists capture images of the measles virus, which is infamously difficult to work with as it is unstable and genetically diverse. It involves applying an electron microscope to take several 2D pictures of the virus while the sample is tilted at multiple angles along one axis. This rotation allows the technology to produce images that represent the virus’s 3D volume.

"With the whole-cell tomography approach, we can collect data on hundreds of viruses during stages of assembly and when released,” explained study co-leader Elizabeth Wright, PhD. “This allows us to capture the full spectrum of structures along the virus assembly pathway."

The measles virus infects the respiratory system, immune system, and skin, resulting in a very contagious infection that devastated the world before a vaccine was developed. Common symptoms include high fever, characteristic spots in the mouth called “Koplik” spots, malaise, loss of appetite, and a rash covering most of the body.

The images obtained from cryo-ET will help scientists map the internal organization of the measles virus, understanding more about its detailed functions, and how to target those functions to improve curative and preventative therapeutics. While there is a vaccine to prevent measles, scientists still don’t completely understand the virus responsible for the disease. The images will also help scientists in understanding similar viruses: parainfluenza, respiratory syncytial virus (RSV), and the Nipah virus.

Via the cryo-ET images, researchers observed an internal matrix glycoprotein, the fusion (F) protein, forming a structural support system build on a foundation of interactions with the matrix (M) protein. They also saw visible “snakes” of encapsidated genetic material close to the viral membrane.

Additionally, researchers identified so-called “paracrystalline arrays” of M protein under the membrane that reportedly resemble Lego grid plates. These arrays have not been seen before in measles virus-infected cells or even the viral particles themselves.

While scientists will continue to glean important information from the images discusses in the present study, for now their findings prove that the structure of the measles virus may work differently than previously thought.

The present study was published in the journal Nature Communications.

Sources: Human Vaccines & Immunotherapeutics, Emory Health Sciences

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
APR 13, 2021
Immunology
Food-borne Fungus Impedes Gut Healing
APR 13, 2021
Food-borne Fungus Impedes Gut Healing
In a recent study, researchers discovered that a fungus present in cheese, processed meats, beer, and other fermented fo ...
JUN 08, 2021
Immunology
Is the Pfizer-BioNtech Vaccine Variant-Resistant?
JUN 08, 2021
Is the Pfizer-BioNtech Vaccine Variant-Resistant?
Genetic variants of SARS-CoV-2 have emerged over the course of the pandemic, threatening public health efforts to limit ...
JUL 01, 2021
Immunology
Simple Dietary Changes Could Help Ease Skin and Joint Inflammation
JUL 01, 2021
Simple Dietary Changes Could Help Ease Skin and Joint Inflammation
Eating too much sugar and fat can have a dramatic impact on the gut microflora, which in turn can flare up inflammatory ...
JUL 05, 2021
Health & Medicine
No Rise in Acid-Related Diseases After Reduction of PPI Use
JUL 05, 2021
No Rise in Acid-Related Diseases After Reduction of PPI Use
In a study including several million veterans as participants, researchers at the University of Michigan found that an i ...
JUL 12, 2021
Cell & Molecular Biology
A Molecule From the Gut Microbiome May Fight Tumors
JUL 12, 2021
A Molecule From the Gut Microbiome May Fight Tumors
The more we learn abut the gut microbiome, the more it seems that the microorganisms in our gastrointestinal tracts can ...
JUL 29, 2021
Immunology
Scientists Discover Bacterial Life on Human Fetuses
JUL 29, 2021
Scientists Discover Bacterial Life on Human Fetuses
A developing fetus in its second trimester of life is changing at an extraordinarily rapid pace––bones are b ...
Loading Comments...