MAY 02, 2018 12:17 PM PDT

Photographing the Measles Virus

WRITTEN BY: Kara Marker

The measles virus was caught leaving infected cells by the scientific paparazzi, that is, experts from Emory Health Sciences using cryo-electron tomography (cryo-ET). In their new study, researchers show how obtaining images of the measles virus at this stage of infection will help them understand better the pathogen’s structure and function.

A thin-section transmission electron micrograph revealed the ultrastructural appearance of a single virus particle of measles virus. Credit: CDC Public Health Image Library

Similar to a CT scan, cryo-ET is an imaging technique that helped Emory scientists capture images of the measles virus, which is infamously difficult to work with as it is unstable and genetically diverse. It involves applying an electron microscope to take several 2D pictures of the virus while the sample is tilted at multiple angles along one axis. This rotation allows the technology to produce images that represent the virus’s 3D volume.

"With the whole-cell tomography approach, we can collect data on hundreds of viruses during stages of assembly and when released,” explained study co-leader Elizabeth Wright, PhD. “This allows us to capture the full spectrum of structures along the virus assembly pathway."

The measles virus infects the respiratory system, immune system, and skin, resulting in a very contagious infection that devastated the world before a vaccine was developed. Common symptoms include high fever, characteristic spots in the mouth called “Koplik” spots, malaise, loss of appetite, and a rash covering most of the body.

The images obtained from cryo-ET will help scientists map the internal organization of the measles virus, understanding more about its detailed functions, and how to target those functions to improve curative and preventative therapeutics. While there is a vaccine to prevent measles, scientists still don’t completely understand the virus responsible for the disease. The images will also help scientists in understanding similar viruses: parainfluenza, respiratory syncytial virus (RSV), and the Nipah virus.

Via the cryo-ET images, researchers observed an internal matrix glycoprotein, the fusion (F) protein, forming a structural support system build on a foundation of interactions with the matrix (M) protein. They also saw visible “snakes” of encapsidated genetic material close to the viral membrane.

Additionally, researchers identified so-called “paracrystalline arrays” of M protein under the membrane that reportedly resemble Lego grid plates. These arrays have not been seen before in measles virus-infected cells or even the viral particles themselves.

While scientists will continue to glean important information from the images discusses in the present study, for now their findings prove that the structure of the measles virus may work differently than previously thought.

The present study was published in the journal Nature Communications.

Sources: Human Vaccines & Immunotherapeutics, Emory Health Sciences

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
SEP 17, 2020
Coronavirus
A Biomarker May Predict the Most Severe COVID-19 Cases
SEP 17, 2020
A Biomarker May Predict the Most Severe COVID-19 Cases
Researchers may have found a way to identify the COVID-19 patients that will need targeted therapies the most.
SEP 20, 2020
Microbiology
Middle-Aged Adults Might Always be Susceptible to H3N2 Flu
SEP 20, 2020
Middle-Aged Adults Might Always be Susceptible to H3N2 Flu
People born in the late 1960s or 1970s might be perpetually susceptible to the H3N2 influenza virus, according to new re ...
SEP 28, 2020
Genetics & Genomics
Why Some Young, Healthy People Get Severe COVID-19
SEP 28, 2020
Why Some Young, Healthy People Get Severe COVID-19
Since the start of the pandemic, scientists have been trying to find out why some people get such severe illness from SA ...
OCT 14, 2020
Immunology
Self-Healing Microcapsules Make Promising Leukemia Vaccines
OCT 14, 2020
Self-Healing Microcapsules Make Promising Leukemia Vaccines
Leukemia is a cancer affecting tissues in the body that produce blood cells, including the bone marrow and the lymphatic ...
OCT 27, 2020
Immunology
The Genetics of Skin Inflammation, Seen With Unprecedented Clarity
OCT 27, 2020
The Genetics of Skin Inflammation, Seen With Unprecedented Clarity
A recent study published in Immunity details MIT scientists’ exploration of the underlying mechanisms of inflammat ...
NOV 24, 2020
Immunology
Dirty Sheets Make Babies Healthier
NOV 24, 2020
Dirty Sheets Make Babies Healthier
Microbiologists have established that the development of infants’ immune systems is intricately linked to the dive ...
Loading Comments...