MAY 02, 2018 12:17 PM PDT

Photographing the Measles Virus

WRITTEN BY: Kara Marker
3 10 197

The measles virus was caught leaving infected cells by the scientific paparazzi, that is, experts from Emory Health Sciences using cryo-electron tomography (cryo-ET). In their new study, researchers show how obtaining images of the measles virus at this stage of infection will help them understand better the pathogen’s structure and function.

A thin-section transmission electron micrograph revealed the ultrastructural appearance of a single virus particle of measles virus. Credit: CDC Public Health Image Library

Similar to a CT scan, cryo-ET is an imaging technique that helped Emory scientists capture images of the measles virus, which is infamously difficult to work with as it is unstable and genetically diverse. It involves applying an electron microscope to take several 2D pictures of the virus while the sample is tilted at multiple angles along one axis. This rotation allows the technology to produce images that represent the virus’s 3D volume.

"With the whole-cell tomography approach, we can collect data on hundreds of viruses during stages of assembly and when released,” explained study co-leader Elizabeth Wright, PhD. “This allows us to capture the full spectrum of structures along the virus assembly pathway."

The measles virus infects the respiratory system, immune system, and skin, resulting in a very contagious infection that devastated the world before a vaccine was developed. Common symptoms include high fever, characteristic spots in the mouth called “Koplik” spots, malaise, loss of appetite, and a rash covering most of the body.

The images obtained from cryo-ET will help scientists map the internal organization of the measles virus, understanding more about its detailed functions, and how to target those functions to improve curative and preventative therapeutics. While there is a vaccine to prevent measles, scientists still don’t completely understand the virus responsible for the disease. The images will also help scientists in understanding similar viruses: parainfluenza, respiratory syncytial virus (RSV), and the Nipah virus.

Via the cryo-ET images, researchers observed an internal matrix glycoprotein, the fusion (F) protein, forming a structural support system build on a foundation of interactions with the matrix (M) protein. They also saw visible “snakes” of encapsidated genetic material close to the viral membrane.

Additionally, researchers identified so-called “paracrystalline arrays” of M protein under the membrane that reportedly resemble Lego grid plates. These arrays have not been seen before in measles virus-infected cells or even the viral particles themselves.

While scientists will continue to glean important information from the images discusses in the present study, for now their findings prove that the structure of the measles virus may work differently than previously thought.

The present study was published in the journal Nature Communications.

Sources: Human Vaccines & Immunotherapeutics, Emory Health Sciences

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
MAR 19, 2018
Immunology
MAR 19, 2018
Omega-6 Fatty Acids Reduce Inflammation, Prevent Heart Disease
Omega-6 fatty acids have traditionally been associated with promoting inflammation, but a new study shows that they also might have anti-inflammatory effec
APR 11, 2018
Immunology
APR 11, 2018
Gene Editing Tools Reveal Two Key Genes Involved in Influenza Infection
Using CRISPR/Cas9 gene editing tools, researchers identified two genes responsible for suppressing the immune system and allowing the influenza virus to in
APR 16, 2018
Immunology
APR 16, 2018
Epstein-Barr Virus Raises Risk of 7 Diseases in Addition to Mono
The repercussions of an infection with Epstein-Barr virus (EBV) may not end with mononucleosis, “mono” or “the kissing disease.” Fi
MAY 11, 2018
Immunology
MAY 11, 2018
Successful Neural Stem Cell Therapy Without Immunosuppression
Neural stem cells designed to be identical to the host they were derived from are the newest hope for scientists in transplantation medicine, specifically
JUN 18, 2018
Immunology
JUN 18, 2018
Detecting and Diagnosing Rheumatoid Arthritis Before it Begins
Unique gene signatures and tiny changes in the immune system that occur in the earliest stages of rheumatoid arthritis, an autoimmune disease, could soon b
JUN 30, 2018
Immunology
JUN 30, 2018
CD4 T Cells Responsible for Inflammatory Bowel Disease
A specific subset of immune cells could be targeted to better treat inflammatory bowel disease (IBD). A new University of Alabama at Birmingham study point
Loading Comments...