MAY 11, 2018 06:39 AM PDT

Successful Neural Stem Cell Therapy Without Immunosuppression

WRITTEN BY: Kara Marker

OOPS! THAT EXPERIMENT FAILED...

It's not your fault! Something went wrong with our formula.
Please begin your experiment again by clicking here.

If this error continues to occur please contact us at support@labroots.com.

Neural stem cells designed to be identical to the host they were derived from are the newest hope for scientists in transplantation medicine, specifically for restoring tissues damaged by a spinal cord injury. From the University of California - San Diego, scientists show how they successfully transplanted such cells into pigs, which are similar to humans in the context of the central nervous system.

A population of induced pluripotent stem cell-derived neurons. Credit: UC San Diego Health

Designing custom neural stem cells from genetically different donors can be difficult. Like any transplantation, inserting foreign cells carries a risk of the host immune system attacking the cells, causing a system-wide inflammatory response.

Giving a transplant patient immunosuppressive drugs prior to the transplantation may reduce the risk of tissue rejection, but the prescription also delivers all the risks that come with suppressing the immune system: leaving the body vulnerable to infections from bacteria, viruses, and parasites.

In their new study, UCSD scientists successfully designed neural precursor cells from induced pluripotent stem cells (iPSCs). Senior author Martin Marsala, MD, lauds human iPSCs as the “ultimate source of cells to be used in future clinical trials for treatment of spinal cord and central nervous system injuries in a syngeneic or allogeneic setting.”

Researchers implanted the neural cells into the spinal cords of genetically identical adult pigs without applying any immunosuppressive drugs, and they observed long-term, cancer-free survival. Not only did the cells survive, but they also differentiated into neurons and supporting glial cells needed to rebuild damaged tissue.

Marsala and the others saw similar positive results in adult pigs with different genetic backgrounds. These pigs also had chronic spinal cord injuries, unlike the genetically identical pigs who were not injured.

"Using RNA sequencing and innovative bioinformatic methods to deconvolute the RNA's species-of-origin, the research team demonstrated that pig iPSC-derived neural precursors safely acquire the genetic characteristics of mature CNS tissue even after transplantation into rat brains,” explained co-author Samuel Pfaff, PhD.

"We took skin cells from an adult pig, an animal species with strong similarities to humans in spinal cord and central nervous system anatomy and function, reprogrammed them back to stem cells, then induced them to become neural precursor cells (NPCs), destined to become nerve cells,” Marsala explained. “Because they are syngeneic - genetically identical with the cell-graft recipient pig - they are immunologically compatible. They grow and differentiate with no immunosuppression required."

The present study was published in the journal Science Translational Medicine.

Source: University of California - San Diego

About the Author
  • I am a scientific journalist and enthusiast, especially in the realm of biomedicine. I am passionate about conveying the truth in scientific phenomena and subsequently improving health and public awareness. Sometimes scientific research needs a translator to effectively communicate the scientific jargon present in significant findings. I plan to be that translating communicator, and I hope to decrease the spread of misrepresented scientific phenomena! Check out my science blog: ScienceKara.com.
You May Also Like
APR 17, 2018
Immunology
APR 17, 2018
New Experimental Model for ALS and MS Immunotherapies
A new mouse model allows researchers to study the impact of immune cell function in the brain on diseases like amyotrophic lateral sclerosis (ALS) and mult...
APR 28, 2018
Cardiology
APR 28, 2018
Eating Dark Chocolate Reduces Stress, Improves Mood
We’ve heard that dark chocolate is good for us in reasonable amounts, but two unique studies from the Loma Linda University Adventist Health Sciences...
JUN 05, 2018
Clinical & Molecular DX
JUN 05, 2018
"ImmunoPET" Imaging Identifies IBD Inflammation
Scientists are now applying PET imaging to detect inflammation in people with inflammatory bowel disease (IBD). This could help countless IBD patients conn...
JUL 31, 2018
Immunology
JUL 31, 2018
The Immune Systems Molecular Alphabet
Lab-designed nucleic acid nanoparticles elicit varied and specific immune response from immune cells based on shape, size, and formulation of each particle....
AUG 10, 2018
Immunology
AUG 10, 2018
Cancer Cell 'Drones' Battle Immune System
Cancer cells release PD-L1 containing exosomes that circulate in the blood and stop T cells before they can reach tumors....
AUG 20, 2018
Immunology
AUG 20, 2018
Photosensitivity Linked to Immune Cell Dysfunction
The Langerhans cells of the immune system activate cytokines essential for skin protection when exposed to UV that is functional in photosensitive individuals....
Loading Comments...