JUL 08, 2018 10:55 AM PDT

Natural Molecule has a Potent Anti-inflammatory Impact

WRITTEN BY: Carmen Leitch

A molecule that is naturally made by a bacterium called Francisella tularensis can disrupt the immune response, new work has shown. This natural compound is a lipid, a fatty, waxy chemical, and a pathogenic microbe can use it to bolster the chances of successfully infecting a host. These findings, by scientists at the National Institute of Allergy and Infectious Diseases of the NIH, has potentially also revealed a therapeutic avenue for using inflammation to fight viral and bacterial illnesses. The work has been reported in the Journal of Innate Immunity.

It’s known that in human and mouse cells that are infected with F. tularensis, the bacteria can utilize lipids to suppress inflammation in those host cells.  One kind of lipid, a type of phosphatidylethanolamine, or PE, was found in that microbe by the NIH researchers; it was also determined to be unique among bacterial PEs. 

Mosquitoes and ticks can transmit a variety of diseases, including tularemia. While this life-threatening disease can be treated with antibiotics, that’s only after it’s been successfully diagnosed, a difficult prospect. F. tularensis evades detection because it can also suppress immunity in its host. 

In this study, it’s shown that this new PE is able to reduce inflammation in host cells infected with the bacteria that causes tularemia as well as the virus that causes dengue fever. Dengue is also transmitted by mosquitoes and although it isn’t usually fatal, the symptoms can be severe and include a high fever and body-wide pain.

Scanning electron micrograph of a murine macrophage infected with Francisella tularensis strain LVS. Macrophages were dry-fractured by touching the cell surface with cellophane tape after critical point drying to reveal intracellular bacteria. Bacteria (colorized in blue) are located either in the cytosol or within a membrane-bound vacuole. / Credit: NIAID

The researchers wanted to assess the therapeutic potential of PE after finding out how the bacterium can use it. Instead of using an infectious microorganism like F. tularensis to make the lipid, the investigators engineered synthetic lipids that would be easier to work with; they were called PE2410 and PEPC2410. The scientists confirmed that they had immunosuppressive effects in mouse and human cells. These synthetic molecules could mimic the immunosuppression seen in cells infected with dengue fever virus.

The scientists are now continuing their work on F. tularensis to learn more about how it impairs the immune response. They are hopeful that it will lead to a therapeutic that can reduce inflammation, considered an underlying cause of many different diseases.

 

Sources: NIH, Journal of Innate Immunity

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 21, 2019
Microbiology
OCT 21, 2019
Artificial Mother-of-pearl, Made by Bacteria
Mother Nature has produced some very durable, tough materials, and some of the best synthetic materials are based on natural products....
OCT 21, 2019
Earth & The Environment
OCT 21, 2019
What role does a light-capturing marine microbe play in climate regulation?
A USC-led research team discovered the unique role that a light-capturing marine microbe plays in regulating Earth’s climate. The team consisted of s...
OCT 21, 2019
Genetics & Genomics
OCT 21, 2019
Gut Microbes can Significantly Impact Host Gene Expression
We all carry a vast number of microbes with us, and the microbial community in the gut is closely linked to our health and well-being....
OCT 21, 2019
Microbiology
OCT 21, 2019
Ticks May Spread Multiple Diseases in One Bite
The incidence of tick-borne diseases is on the rise, and ticks present a growing threat to public health worldwide....
OCT 21, 2019
Cell & Molecular Biology
OCT 21, 2019
RNA Polymerases Can Signal to One Another Over Long Genomic Distances
Scientists have taken a close look at transcription in the Escherichia coli bacterium at the level of a single molecule....
OCT 21, 2019
Cell & Molecular Biology
OCT 21, 2019
Researchers Discover a Cause of Antibiotic Resistance
For years, people have relied on antibiotics to cure bacterial infections, and many of those antibiotics are now becoming less effective....
Loading Comments...