AUG 13, 2018 7:53 AM PDT

Insight Into the Origins of Junk DNA - From Koalas

WRITTEN BY: Carmen Leitch

The human genome is made up of four nucleotide bases: A, T, G, and C, that are arranged to form genes. However, aside from genes, there is a lot of other stuff in the genome including long strands of repetitive sequences that don’t have any readily apparent function. While the research that focused on those regions has revealed some things about their purpose, much is still unknown. Incredibly, koalas might be able to help scientists reveal some of the secrets of these so-called ‘junk’ sequences. Koalas often carry an infection that may explain how viruses impacted the genetic material of many different species was impacted.

Led by Professor and Virologist Paul Young, the Head of UQ's School of Chemistry and Molecular Biosciences, scientists have studied a koala retrovirus. Retroviruses can actually work their way into the genome of their host. 

"Retroviruses insert their genome into their host's chromosome, from where they make more copies of themselves," Young explained. "Some can also infect what are known as germline cells, which alters the host genetic code and that of all their descendants."

We know that the human genome has been altered by retroviruses for more than five million years, making it hard to study the first changes they made. Koalas, however, are undergoing more recent alterations.

"About a decade ago, we discovered that the wild koala population was being invaded by a retrovirus," said Young. "This isn't great news for the koala, but it has provided us with an opportunity to study what's happening to these retroviral genomes early in their association with a new host."

Koala / Credit: Carmen Leitch

Young noted that retroviruses could potentially replicate endlessly, which would eventually spell disaster for a species. But usually, the viruses eventually cease to cause disease and instead, confer new functions on an organism or turn inert, potentially as junk DNA. "Until now, scientists could only guess at why and how this happened," Young noted.

It would be very intriguing to see a retrovirus at work, said Professor Joanne Meers of UQ. "Because the koala retrovirus is still relatively young - less than 50,000 years old - and not yet 'fixed' in a certain location within the koala genome, scientists can monitor this early engagement between a retrovirus and its host."

"This means that the koala, a species not usually associated with biomedical breakthroughs, is providing key insights into a process that has shaped eight per cent of the human genome, and will likely show us what happened millions of years ago when retroviruses first invaded the human genome,” added Professor Alex Greenwood of the Leibniz Institute for Zoo and Wildlife Research in Berlin.


Sources: AAAS/Eurekalert! via University of Queensland, PNAS

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
NOV 17, 2019
Microbiology
NOV 17, 2019
How a Virus Can Help Treat Alcoholic Liver Disease
Viruses don't only infect humans, some, called bacteriophages or phages, infect bacteria. Image credit: Wikimedia Commons/AFADadcADSasd...
NOV 20, 2019
Cell & Molecular Biology
NOV 20, 2019
Learning More About the Unknown Viruses in the Human Body
Some viruses, called bacteriophages, infect bacteria. A research team found many of these viruses in human samples....
NOV 26, 2019
Microbiology
NOV 26, 2019
New Drug Can Promote Resistance in the Flu Virus
A flu drug, while still safe and effective, encourages flu viruses to mutate, especially in children....
DEC 05, 2019
Earth & The Environment
DEC 05, 2019
Scientists Get a Closer Look at "The Plastisphere"
Plastic litter is a global problem, and some of the tiniest culprits are not visible to the naked eye. These microplastics have infiltrated the world's...
DEC 15, 2019
Microbiology
DEC 15, 2019
Neurons in the Gut Can Detect Salmonella & Protect Against Infection
Nerve cells act as critical sensors for the human body, and now scientists have found that they have another role in the small intestine....
JAN 11, 2020
Cell & Molecular Biology
JAN 11, 2020
To Save Others, Bacteria Can Self-Destruct When Infected by a Virus
Scientists were studying viruses that infect and kill bacteria as a medicine for bacterial infections over a hundred years ago, and they are a focus of recent research as well....
Loading Comments...