SEP 20, 2018 7:25 PM PDT

How A Virus Impacts a Bacterium that Infects People

WRITTEN BY: Carmen Leitch

You may have never heard of melioidosis, also known as Whitmore’s disease, but it is a scary infection in many parts of the world. It causes sepsis and organ abscesses and can lead to death in only 48 hours. It’s caused by a bacterium,  Burkholderia pseudomallei, and is widespread in West and East Africa, Australia, and Southeast Asia. An international team of researchers has now created a mathematical model that will enable the monitoring and control of melioidosis in Southeast Asia.

Burkholderia mallei / Image credit: Adapted from Pixnio

The research team, from the University of Leicester, Lomonosov Moscow State University (MSU), and the Moscow Institute of Physics and Technology (MIPT) wanted to look beyond the pathogen, to the bacteriophages (viruses that only infect bacteria) in its environment. 

"Melioidosis is a severe and dangerous disease, but much of the research into it focuses on the bacterium that causes. Meanwhile, the phages abundantly found in the habitat of the pathogen are not getting enough attention. We wondered whether we could predict the variation in the number of pathogenic bacteria and the impact of phages on it depending on season and environmental conditions," explained the co-author of the study, Dr. Andrew Morozov of the University of Leicester.

Mathematical models were developed based on two Thai provinces, to predict the dynamics of  B.pseudomallei populations. The models can take temperature-dependent phages into account, showing how the bacteria-killing phages impact the pathogen population. It was found that March through September poses the greatest risk; at that time, phages that kill the pathogen are at their lowest, when UV is at its highest. As phage numbers decline in spring and through summer because of UV, more bacteria that aren’t impacted by the virus are present. Temperature also takes bacteriophages through lytic and lysogenic stages, which is explained in the following video.

Fertilizers were also found to affect levels of phage-free bacteria, but more work has to be done. It’s tough to predict what that effect might be, but it could increase the likelihood that it will infect humans.

"Unlike in a lab, in nature, there are factors that limit the size of the populations of both pathogenic and phage-infected bacteria. To make our model more realistic, we measured a host of actual phage parameters. That way the model can predict which combination of seasonal parameters results in a high risk of a melioidosis infection," added Professor Andrey Letarov of MSU and MIPT, who also heads the Laboratory of Microbial Viruses at Winogradsky Institute of Microbiology of the Russian Academy of Sciences.

The data on the  B.pseudomallei-phage interactions can help farmers control disease. Rice field work can be rescheduled, and after identifying the problematic times, proactive measures can be taken to reduce risk to workers. Agrochemicals that are not harmful to bacteriophages can also be utilized.

"Mathematical modeling enables us to make predictions under various regimes. In particular, we can estimate the impact of global warming on [the] spread of endemic zones of disease," said Dr. Morozov. "We are resuming this research. This autumn, we will run a series of experiments to study in more detail how agricultural chemicals affect the level of phages in the soil, how phages and bacteria interact in it, and which limiting factors are at play there."

 

Sources: Phys.org via University of Leicester, Scientific Reports

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 24, 2020
Cell & Molecular Biology
A Shield Surrounds the Flexible SARS-CoV-2 Spike Protein
AUG 24, 2020
A Shield Surrounds the Flexible SARS-CoV-2 Spike Protein
Researchers know that the viruses including SARS-CoV-2 have a Spike protein that allows them to bind to receptors on hos ...
SEP 04, 2020
Microbiology
Researchers Discover a Way to Use Microbes to Help Make Plastic
SEP 04, 2020
Researchers Discover a Way to Use Microbes to Help Make Plastic
Researchers have discovered that some bacteria can make ethylene in a way we never knew about; microbes that metabolize ...
SEP 28, 2020
Microbiology
The Flu Vaccine Will Not Increase the Risk of COVID-19
SEP 28, 2020
The Flu Vaccine Will Not Increase the Risk of COVID-19
Scientists and clinicians want people to get their flu shots this year, especially because of the ongoing pandemic.
OCT 26, 2020
Immunology
Gearing up for Life: The First 7 Days of the Immune System
OCT 26, 2020
Gearing up for Life: The First 7 Days of the Immune System
The mother’s placenta serves as a shield for the developing fetus inside the womb, protecting it from the constant ...
NOV 19, 2020
Immunology
Parasitic Worms Help Unravel the Immune Mechanisms Underlying Chronic Disease
NOV 19, 2020
Parasitic Worms Help Unravel the Immune Mechanisms Underlying Chronic Disease
Parasitic worms known as helminths have a complicated relationship with the immune systems of the hosts they invade. Ter ...
NOV 17, 2020
Drug Discovery & Development
Antibiotics Before Age 2 Linked to Childhood Health Conditions
NOV 17, 2020
Antibiotics Before Age 2 Linked to Childhood Health Conditions
Researchers from Mayo Clinic have found a link between children aged two and under taking antibiotics and an increased r ...
Loading Comments...