OCT 16, 2018 12:51 PM PDT

Simple Test Rapidly Diagnoses Antibiotic-resistant Infections

WRITTEN BY: Carmen Leitch

If we get a bacterial infection, doctors use antibiotics to treat it. But sometimes people are infected by pathogens that are resistant to the effects of antibiotics, a growing problem worldwide. If clinicians could find out quickly when people are dealing with drug-resistant microbes, they can act rapidly to treat those persistent infections instead of cycling through standard therapeutics before finding out that none of them work. Researchers at the University of California, Berkeley have developed a test that can indicate whether antibiotic-resistant strains of bacteria are to blame for a patient’s infection.

"Health organizations around the world are supporting the development of tools that specifically identify pathogens that are resistant to antibiotics because there are limited tests available that can do it quickly," said Tara deBoer, a postdoctoral fellow in the College of Engineering at UC Berkeley. "Our test is simple and gives us information on a short timescale."

So-called superbugs that can evade the effects of drugs are responsible for the deaths of around 700,000 people every year, a number that the United Nations has warned will rise much higher in the near future. By diagnosing these infections and moving rapidly to treat them with the proper drugs, we may be able to limit their spread.

The new, inexpensive, simple diagnostic test has been called DETECT. It uses urine samples to identify molecules carried by antibiotic-resistant germs. The test doesn’t require an expensive machine to run it, and can be applied in a clinical setting. The work will be reported in the October 18 issue of the journal ChemBiochem.

"In theory, DETECT will allow you to diagnose antibiotic-resistant bacterial infections in a doctor's office just by collecting urine and mixing it with the DETECT reagents," noted Niren Murthy, a professor of engineering at Berkeley.

"Drug-resistant infections are a silent pandemic that actually kill more people every year than Zika or Ebola," added Lee Riley, professor of epidemiology and infectious diseases in the School of Public Health at UC Berkeley. "The faster you can start the right drug, the better the chances of survival or avoiding complications."

Many of humankind's first antibiotics that a lot of us are familiar with, like amoxicillin, penicillin, and ampicillin, act on a structure in bacteria called beta-lactam. The drugs stop bacterial cell walls from being constructed, so microbes cannot reproduce and the infection is snuffed out.

For a variety of reasons, including antibiotic misuse, some pathogens have evolved and have overcome antibiotics. There are strains of Salmonella, E. coli, and Shigella that now make enzymes that can digest those antibiotics; they are called beta-lactamases, and render the drugs ineffective.

Urine samples are tested in a plate similar to this one / Credit: Carmen Leitch

The DETECT system can indicate when those beta-lactamases are present in urine. "What our technology does is detect the molecules that are actually breaking down the antibiotics," deBoer explained.

There was already a way to detect beta-lactamases. For this work, the researcher had to make it sensitive enough to see them in patient samples, something that was labor-intensive with previous methods.  They tested their invention and found that of 40 patients with urinary tract infections, around 25 percent of them were resistant to antibiotics.

"DETECT tells you not only who has antibiotic-resistant infections but also tells you who could be treated by early-generation antibiotics, allowing you to spare higher-end antibiotics and slow the spread of drug resistance," Murthy said.

The team is now working to bring DETECT from the bench to the bedside. They also want to create a test that can detect beta-lactamases in blood samples.

"I think we are on the verge of having this applicable in a hospital setting," Riley said.


Sources: AAAS/Eurkealert! Via UC Berkeley, ChemBiochem

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
APR 15, 2021
Clinical & Molecular DX
A Portable Ebola Detector, 1000x More Sensitive Than Lab-Based Tests
APR 15, 2021
A Portable Ebola Detector, 1000x More Sensitive Than Lab-Based Tests
Duke University scientists have created a highly sensitive Ebola virus portable diagnostic device, 1000 times more sensi ...
MAY 20, 2021
Clinical & Molecular DX
Gonorrhea Testing on the Go
MAY 20, 2021
Gonorrhea Testing on the Go
Forget lab-based tests—a new portable microfluidic device links to a mobile app, diagnosing gonorrhea in just 15 m ...
MAY 17, 2021
Microbiology
Bacteria Can Time Their DNA Replications by the Circadian Clock
MAY 17, 2021
Bacteria Can Time Their DNA Replications by the Circadian Clock
The circadian rhythm is the body's clock, and it influences physiology at the cellular level; it can help animals, inclu ...
MAY 26, 2021
Genetics & Genomics
Connecting Bacterial Genes to Human Disease
MAY 26, 2021
Connecting Bacterial Genes to Human Disease
This kind of research gets us closer to using fecal samples to get a snapshot of the microbiome, and make disease risk p ...
JUN 02, 2021
Cell & Molecular Biology
Methylation Affects the 3D Structure of the Genome
JUN 02, 2021
Methylation Affects the 3D Structure of the Genome
Gene activity has to be carefully controlled by cells so that they maintain their identity and continue to carry out the ...
JUN 06, 2021
Cell & Molecular Biology
Caught in the Act of RNA Transcription
JUN 06, 2021
Caught in the Act of RNA Transcription
Researchers have now been able to capture an enzyme called RNA polymerase on video as it copies a DNA sequence into an R ...
Loading Comments...