APR 06, 2019 8:45 AM PDT

Why Yellowstone Hosts an Incredibly Diverse Microbial Community

WRITTEN BY: Carmen Leitch

Yellowstone National Park is home to hot springs that sit thousands of feet above sea level, where volcanic gases, rainwater and snow mix in blue hot springs. According to researcher Dan Colman, that unique mixture allows an incredibly diverse community of microorganisms to grow. Colman has found that a thumbnail-sized sample of the mixture contains more microbial biodiversity than the rest of the animal and plant diversity in all of Yellowstone. These microbes included different branches of life - bacteria and archaea, and under half have been detected in hydrothermal environments before this. Learn more about the microbes of Yellowstone from the video.

The findings, by Colman, graduate student Melody Lindsay, and associate professor Eric Boyd, have been reported in Nature Communications. “We think that this work has some pretty broad implications that stretch across several disciplines," said Colman, who is the lead author of the report and an assistant research professor in the Department of Microbiology and Immunology in the College of Agriculture and the College of Letters and Science.

The paper is unique, noted Boyd, because it explains what conditions enabled this microbial diversity to arise and be sustained. "A lot of people are interested in discovering diversity. That's the end goal. That's admirable," Boyd said. "What Dan wanted to know is why. Why do we have so much diversity, and why are some springs more diverse than others?"

Some of these newly found organisms may also eventually provide insight into the earliest forms of life.

The geochemistry of the hot spring the researchers investigated, Smoke Jumper 3 (SJ3) is unique, said Colman. That made it a perfect place for learning more about the influence of volcanic gases on hydrothermal systems and microbial life that thrives on chemical instead of light energy. The geographical location of SJ3, and its site above an active volcano, is critical to that life. “SJ3 is located at high elevation on the Continental Divide, features that prevent deep hydrothermal water aquifers from reaching this area,” noted Colman.

Colman explained that SJ3 and springs like it are fed by volcanic gases that get produced as hydrothermal waters boil, moving them to the surface. Water like rainfall or snowmelt near the surface can mix with the gases, which are rich in hydrogen, methane and carbon monoxide. The water, meanwhile, carries high levels of oxygen. As these very different fluids mix, it may drive the growth of diverse groups of microbes.

“Just like a greater variety of food attracts more and different types of people, so does a hot spring that offers a variety of chemical conditions,” explained Colman.

Using genetic sequencing tools, it took the research team about three years to fully characterize the microbial community in the hot spring. While most hot springs host only a few types of microbes, SJ3 had members from nearly half of every known microbial group in the planet, including dozens of unknown lineages.

"Moreover, many of the lineages that we detected in SJ3 have recently garnered significant attention because of their potential to inform on the evolution of methanogenesis (the biological creation of methane), in addition to previously unknown types of methanogens, and deep branching microbial lineages associated with subsurface environments and many other enigmatic lineages," Colman said. "It is likely that additional studies of such systems and the intriguing organisms within them will yield additional important insights into microbial ecology and will shed new light on their role in the evolution of biogeochemical processes."


Sources: AAAS/Eurekalert! via Montana State University, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
AUG 21, 2020
Microbiology
Vaccine Aimed at Fungi May Also Protect Against MRSA
AUG 21, 2020
Vaccine Aimed at Fungi May Also Protect Against MRSA
Staphylococcus aureus is a common bacterium. If it stays on the skin it's harmless, but if it gets into the bloodstream, ...
AUG 24, 2020
Genetics & Genomics
Towards a Cure for Latent Herpes 1 Infections
AUG 24, 2020
Towards a Cure for Latent Herpes 1 Infections
Herpes simplex virus 1 (HSV-1) causes what's popularly known as cold sores, and is transmitted mostly through oral-t ...
SEP 06, 2020
Microbiology
Small Changes in Vaccine Molecules Could Make Them More Effective
SEP 06, 2020
Small Changes in Vaccine Molecules Could Make Them More Effective
Effective vaccines have to trigger an immune response, which is intended to create an immune 'memory' of a specific infe ...
SEP 09, 2020
Microbiology
Changing How We Think of Drug Resistance in Fungi
SEP 09, 2020
Changing How We Think of Drug Resistance in Fungi
It's been estimated that fungal infections cause more than one million deaths worldwide, and many more are affected.
SEP 15, 2020
Microbiology
If They Must, Methane-Eating Microbes Will Consume Ammonia
SEP 15, 2020
If They Must, Methane-Eating Microbes Will Consume Ammonia
There are many different kinds of microbes, and some can use unusual substances to survive. Methanotrophs, for example, ...
DEC 03, 2020
Cell & Molecular Biology
7 Considerations When Purchasing a Microvolume UV-Vis Spectrophotometer
DEC 03, 2020
7 Considerations When Purchasing a Microvolume UV-Vis Spectrophotometer
It all started with the Thermo Scientific™ NanoDrop™ 1000 as the first microvolume UV-Vis spectrophotometer, ...
Loading Comments...