AUG 19, 2015 02:52 PM PDT

Me, Myself and My Microbiome: We Are Not Alone

WRITTEN BY: Sarah Hertrich
2 13 1892
According to new research conducted by researchers at Vanderbilt University and the University of Michigan, the age of referring to living organisms as individuals is over. Instead, plants and animals should be referred to biomolecular networks instead of autonomous entities. These biomolecular networks include the host as well its associated microbes which the authors of this study refer to as “holobionts” which make up the “hologenome” of this biomolecular network. This new terminology, along with the term “microbiome” helps describe the genetic makeup of the host plus the genome of the species of microorganisms living on and within the host.
9 out of 10 plant and animal cells are made up of bacteria.
In fact, approximately 9 in 10 of the cells that make up plants and animals are bacterial and are not derived from the hosts themselves. Because of the small size of the holobionts compared to the host, they go virtually unnoticed. In their recently published study, Seth R. Bordenstein and Kevin R. Theis discuss 10 new principles surrounding their theory of holobionts and the hologenome. The authors believe that the results of plant and animal experiments are often misinterpreted due to the previous belief of these entities existing as individuals instead of a complex network of multiple entities. They suggest that holobionts and hologenomes become referred to as fundamental units of the biological hierarchy of organization.
The holobiome includes the genetics of the host as well as the microorganisms living on or within the host.
According to Dr. Bordenstein, these ideas have been well accepted by the microbiology community but not in others. In addition, the authors feel that the adoption of these ideas will help bring together the fields of plant and animal sciences in order to create more collaborative research efforts and ideas. The authors feel that this new understanding will have profound effects on the ability to understand diseases where genetics and well as environment have been identified as influential factors, such as with autism, autoimmune and metabolic diseases.


Sources: PLOS Biology, Science Daily
About the Author
  • I am a postdoctoral researcher with interests in pre-harvest microbial food safety, nonthermal food processing technologies, zoonotic pathogens, and plant-microbe interactions. My current research projects involve the optimization of novel food processing technologies to reduce the number of foodborne pathogens on fresh produce. I am a food geek!
You May Also Like
MAY 08, 2018
Cell & Molecular Biology
MAY 08, 2018
Advances in the Study of the Oral Microbiome
Scientists are learning more about the microbes that we carry in and on our bodies, and how they impact our health.
MAY 09, 2018
Microbiology
MAY 09, 2018
A Giant Ocean Virus has Been Isolated & Characterized
One study estimated that we share the planet with at least 320,000 microorganisms have the potential to infect mammals.
MAY 28, 2018
Clinical & Molecular DX
MAY 28, 2018
Bacterial Toxin Linked to Inflammatory Bowel Disease
Scientists have found evidence that it's not a bacterium, but one of its toxins, that is connected to, and possibly causing intestinal dysfunction.
JUN 04, 2018
Microbiology
JUN 04, 2018
Neutralizing Infections with Nanotechnology
Clearing bacterial infections from the body can present challenges. Engineers are trying to use nanorobots for such situations.
JUL 07, 2018
Microbiology
JUL 07, 2018
A New Target for an Effective Gonorrhea Treatment
Many pathogens are becoming antibiotic resistant; the microbe that causes the STD gonorrhea is no different.
AUG 14, 2018
Microbiology
AUG 14, 2018
Germs are Gaining Resistance to Hand Sanitizers
Alcohol-based hand sanitizers are not as effective as they once were.
Loading Comments...