AUG 06, 2019 2:24 PM PDT

Lab Mice Born to Moms From the Wild Make Better Research Models

WRITTEN BY: Carmen Leitch

Researchers have used mouse models for decades. While they have been the source of some important discoveries, there has been some criticism of mouse studies that may be poorly designed or don’t mimic human conditions. Some research has been difficult to reproduce, calling conclusions into question. Studies have also suggested that the environment of lab mice is so far from what's experienced in the natural world that they cannot faithfully replicate a free-living mammal’s physiology. One reason why wild animals are so physiologically different from their laboratory counterparts is the microbiome.

Wild mouse / Credit: Pxhere

The microbes that we and many other animals carry, especially those in our gastrointestinal tract - also known as the gut microbiome, have been shown to have a strong influence on the host’s health and well-being. Imbalances in the microbiome have been connected to a variety of human diseases. Some of that work has been conducted using human samples, but other studies have used research animals.  

Mice used in research are classified by strain and there is often a wealth of physiological data available about them, especially one strain in particular, C57BL/6, which is a mouse that can be commonly found in the lab. Importantly, there is a high-quality reference genomic sequence for this mouse.

A new study has found that by implanting C57BL/6 embryos into mice from the wild, the resulting colony, which the study authors called wildlings, were more like their wild counterparts. They still carried the genome we know so much about, but the physiology of the wilding mouse is more like a mammal that lives freely, and has an immune system that has evolved to withstand the natural world as opposed to the industrial environment of research facilities.

The researchers found that the wildling colony was different from typical lab mice when it came to the viruses, fungi, and bacteria they carried in their gut, as well as the microbiome of their skin and vagina. This wildling microbiome was found to be stable over generations and withstood exposure to antibiotics or diet variation.

In this study, the investigators evaluated their model, focusing on the immune system of wild and laboratory mice as well as the wildlings they created. After surveying several sites including the gut and skin, the researchers found that the immune system of the wildlings was most like their wild counterparts when it came to the characteristics observed in the blood and spleen.

Natural microbes can help reduce shortcomings of current mouse models. The C57BL/6 genotype was preserved while generating a natural microbiome by using wild mice as surrogates for C57BL/6 embryos. The resulting colony of wildings carried a microbiome that was resilient and stable over time, through challenges. In immunological tests, wildling mice had higher translational research value. / Credit: Science 2019  Rosshart et al

The researchers wanted to check the validity of the wildling mouse model they created. They determined whether it is an improvement over current rodent models by focusing on old research conclusions that did not hold up once they were tested in the clinic on human patients. One such assay looked at the CD28-superagonist (CD28SA); in mice and other models, CD28SA had a therapeutic impact on autoimmune and inflammatory diseases, likely through the expansion of anti-inflammatory regulatory T cells (Tregs). In clinical trials, however, there were life-threatening immune side effects. In the wildling model, CD28SA did not expand Tregs and caused an immune response, contrary to the findings from lab mice.

The wildlings also served as a better model for testing the effects of anti-tumor necrosis factor-alpha (TNF-α) during septic shock. The treatment failed in people after working in animal models. The wildlings were also not rescued by this therapy, and acted as a better model of the human immune system in this case as well.

The researchers concluded that wildlings can be better for the study of a variety of diseases, including neurodegenerative and metabolic disorders. Using them may help improve reproducibility and translatability to the clinic.

Previous work has found that the lab mice don't carry a particularly healthy microbiome. It could be fortified, however, by adding gut microbes from wild mice to the guts of lab mice. The lab mice that received the wild-mouse microbes had better health. Those results are outlined in the video.

Source: Science

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
FEB 16, 2020
FEB 16, 2020
Images of Coronavirus Are Released as First Death Outside China is Reported
Previously known as 2019-nCoV, the virus has a new name: SARS-CoV-2, which is the cause of what's being called COVID-19 ...
FEB 23, 2020
FEB 23, 2020
New discovery could help preterm babies breathe easy
Babies born more than three weeks before full term are met with complicated and often life-threatening health challenges. Most notably, these tiny preterm
MAR 02, 2020
Drug Discovery & Development
MAR 02, 2020
DIY Fecal Transplants Improve Symptoms in 82% of People
Fecal transplants (FMT), the process of putting a healthy person’s fecal matter into another person’s colon, has been approved as a procedure t
MAR 26, 2020
MAR 26, 2020
US Now Leads the World in Coronavirus Cases
In the United States, there have been 83,836 confirmed cases of COVID-19, and over 529,000 worldwide.
MAR 30, 2020
MAR 30, 2020
The Microbial Communities That Form on the Tongue
Scientists used a fluorescent imaging tool to analyze how bacteria grow on the human tongue.
APR 02, 2020
Chemistry & Physics
APR 02, 2020
Improved management of nitrate pollution
Researchers have finally succeeded in improving the mechanisms available for the degradation of nitrate pollution. Scientists at the Center for Sustainable
Loading Comments...