OCT 09, 2019 05:12 PM PDT

A Bacterial Pathogen Can Steal Huge Chunks of DNA From Other Microbes

WRITTEN BY: Carmen Leitch

Microorganisms are everywhere, and they are often engaged in a fight for resources with other microbes. They can adapt to changing conditions and have many specialized abilities. The bacterium that causes cholera, Vibrio cholerae, has a kind of miniature spear and can stab other microbes with it. Called the type VI secretion system (T6SS), it was discovered in 2015 by scientists at the Ecole Polytechnique Fédérale de Lausanne (EPFL) led by Melanie Blokesch.  Bacteria can also easily share genes with each in a process called horizontal gene transfer; it’s one of the ways that resistance to antibiotics is spread, for example. The researchers have now found that the T6SS enables V. cholerae to grab genes from the bacteria they poke.

Under a high magnification of 22371X, this scanning electron microscopic (SEM) image depicted a Vibrio cholerae bacterium of the serogroup 01. / Credit: CDC/ Janice Haney Carr

Reporting in eLife, Blokesch's team determined that the V. cholerae bacterium, which has been responsible for seven serious outbreaks since 1817 and still causes the deaths of over 100,000 people every year, can steal a huge amount of genetic material with its spear. By sequencing the genomes of nearly 400 strains of V. cholerae, the researchers found that V. cholerae can grab about 150,000 base pairs, which could contain as many as 150 genes, in one stab.

"This finding is very relevant in the context of bacterial evolution," said Blokesch. "It suggests that environmental bacteria might share a common gene pool, which could render their genomes highly flexible and the microbes prone to quick adaption."

Other research studies have examined this question - how much DNA can a bacterium absorb into its genome? This has been done by exposing bacteria in the lab to large amounts of purified DNA. These tests don’t necessarily show what happens in nature, however.

Learn more about the T6SS from the video.

For this work, the scientists took the natural habitat of V. cholerae into account - long bits of DNA aren’t often floating around in nature. DNA that has been freshly released from other microbes can be found, however, and the T6SS can take it up, which sometimes happens on the surface of shells in the ocean and in estuaries, where the microbe often lives.

The researchers examined two strains of V. cholerae that are not related and grew them together on a shell-like or chitinous surface to mimic natural conditions. They found that strains of V. cholerae carrying a functional T6SS system induced by chitin can efficiently transfer DNA in this environment. Large amounts of the genome could be taken up by predatory V. cholerae. The investigators suggested that the evolution of the bacterium is aided significantly by this mechanism.

Sources: AAAS/Eurekalert! via EPFL, eLife

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
OCT 17, 2019
Microbiology
OCT 17, 2019
Some Microbes Can't be Washed off of Apples
There may be tangible benefits to selecting organic fruits....
OCT 17, 2019
Microbiology
OCT 17, 2019
Unlocking the Secret of Carbapenem Resistance in a Hospital Pathogen
While attention has been brought to the issue and some progress has been made, hospital-acquired infections are still a major problem....
OCT 17, 2019
Microbiology
OCT 17, 2019
Antidepressants and Serotonin Impact Gut Microbiota
About 90% of the serotonin found in the human body is made in the gut. Some bacteria can encourage the release of serotonin from gut cells....
OCT 17, 2019
Microbiology
OCT 17, 2019
Ticks May Spread Multiple Diseases in One Bite
The incidence of tick-borne diseases is on the rise, and ticks present a growing threat to public health worldwide....
OCT 17, 2019
Microbiology
OCT 17, 2019
Salmonella Becomes More Deadly and Drug-Resistant in Central Africa
An international team of scientists has identified strains of extensively drug-resistant Salmonella typhimurium....
OCT 17, 2019
Microbiology
OCT 17, 2019
Using CRISPR to Alter or Kill Bacteria
In recent years, the gene editing tool CRISPR/Cas9 has been applied to a wide variety of different organisms, and now, bacteria....
Loading Comments...