SEP 02, 2015 05:47 PM PDT

Microbes Diagnose Zinc Deficiency

WRITTEN BY: Kerry Evans

OOPS! THAT EXPERIMENT FAILED...

It's not your fault! Something went wrong with our formula.
Please begin your experiment again by clicking here.

If this error continues to occur please contact us at support@labroots.com.

Vitamin and mineral deficiency is a significant global health problem.  Nearly 18% of the global population is deficient in micronutrients such as iron, folate, vitamin A, and zinc.  Dietary supplements can correct these deficiencies, but researchers must first identify which populations are at risk.  This is a challenge because it is difficult to diagnose nutritional deficiencies in resource-poor areas.  Researchers at the Georgia Institute of Technology, however, have set out to tackle this problem.

Researchers engineered E. coli to sense and respond to zinc levels. 
The team, led by assistant professor Mark Styczynski, engineered E. coli to sense and respond to zinc in blood samples.  How did they turn E. coli into such a sophisticated bio-sensor?  Lucky for them, the bacteria already produce a system that senses zinc.  The next step was to link this sensor to pigment production.  For this, they incorporated genes from other bacteria that produce lycopene (red pigment), beta-carotene (orange), and violacein (purple).
 
The idea is that healthcare personnel working in resource-poor areas can separate plasma from blood samples using a simple centrifuge.  Then, they will add a freeze-dried pellet of bacteria to the plasma.  After around 24 hours, the bacteria will produce enough pigment to be easily visible to the naked eye.  Purple means there is too little zinc, while orange and red indicate normal and borderline levels, respectively.  According to Styczynski, “the general idea of bio-sensing is certainly out there, but we have taken the step of developing a system that doesn’t require equipment in the field … we believe this will work well in low-resource areas”.
 
One drawback is that E. coli does not require the same micronutrients as humans.  This means that other organisms, such as yeast, will have to be similarly engineered as bio-sensors.  Regardless, this “bacterial litmus test” could no doubt revolutionize medical diagnostics for resource-poor communities.


 
Sources: Metabolic Engineering, Science Daily, CDC
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
MAY 09, 2018
Microbiology
MAY 09, 2018
A Giant Ocean Virus has Been Isolated & Characterized
One study estimated that we share the planet with at least 320,000 microorganisms have the potential to infect mammals....
MAY 17, 2018
Microbiology
MAY 17, 2018
Increased Concern as Ebola Outbreak Spreads to a City
Along with partners like Médecins Sans Frontières, WHO is springing into action to try to stop the spread of the virus....
MAY 19, 2018
Microbiology
MAY 19, 2018
Yogurt may Help Reduce Inflammation
While inflammation is an important part of the response to injury or illness, chronic inflammation has been implicated as a common factor in many diseases....
JUN 28, 2018
Microbiology
JUN 28, 2018
Stopping Bacterial Spores From Getting Into Space
Researchers want to stop the contamination of extraterrestrial environments by earthly bacteria....
JUL 04, 2018
Drug Discovery
JUL 04, 2018
Increased Dose of Drug 'Rifampin' Effective in Eliminating Tuberculosis Bacterium
According to a randomized controlled trial, a TB drug by the name ‘Rifampin’ was seen to effectively kill TB bacteria in sputum cultures when a...
AUG 14, 2018
Microbiology
AUG 14, 2018
How Ebola Gets Into Cells
Researchers have learned how Ebola gains entry to cells, which can help us stop it....
Loading Comments...