NOV 11, 2019 1:37 PM PST

The Mechanism of Lysostaphin, a MRSA-Killing Enzyme, is Revealed

WRITTEN BY: Carmen Leitch

Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen that is often associated with healthcare settings but can cause serious infections in anyone. These illnesses are difficult to treat because the bacterium can resist the effects of several antibiotics. Researchers at the University of Sheffield have now learned how a toxin called lysostaphin, which is produced by another bacterium called Staphylococcus simulans, can target and destroy MRSA. This knowledge can help inform the development of new treatments for antibiotic-resistant microbes, also known as superbugs.

A digitally colorized, scanning electron microscopic image depicting spheroid, MRSA bacteria (yellow) in the process of being ingested by a white blood cell known as a neutrophil, (blue). / Credit: National Institute of Allergy and Infectious Diseases

In this work, reported in Nature Chemical Biology, the scientists found that lysostaphin can zero in on the cell wall of MRSA superbugs. Lysostaphin is an enzyme, and there are two places on one part of the lysostaphin molecule that each recognize their own portion of the cell wall. This unusual attachment can cluster enzymes together on the cell wall of the MRSA pathogen. The enzymes can then trigger the breakdown of the wall, killing the superbug.

The ability of lysostaphin to stop Staphylococcal infections has already been recognized; the enzyme was discovered more than fifty years ago. However, the mechanism it uses to eliminate the pathogen was unknown. Now that we understand how it works, the knowledge can be used to create better drugs to treat the growing threat of antibiotic-resistant pathogens.

"Lysostaphin is arguably the most studied enzyme after lysozyme, so we are delighted that our research is able to explain the mechanism underpinning its potent antibacterial activity," said the study leader Dr. Stéphane Mesnage, a Senior Lecturer in Molecular Biology and Biotechnology.

"Our study explains how this enzyme is able to target and digest the MRSA bacteria and why it is so potent. Hospital-acquired infections caused by bacteria resistant to last-resort antibiotics are on the rise, but our work could lead to the development of new treatments for these superbugs that use the same targeting mechanism."

Learn more about Staph infections from the video above by the Centers for Disease Control and Prevention. There is more information about superbugs in the following video.

 

Sources: Phys.org via University of Sheffield, Nature Chemical Biology

 

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 26, 2020
Microbiology
JAN 26, 2020
The Planet's Soil is Home to Microbe-Eating Protists
Protists don't fit neatly into any other category of organism; they are eukaryotes, but they are not a plant, fungi or animal....
FEB 08, 2020
Drug Discovery & Development
FEB 08, 2020
Drug Targets Brain-Eating Amoebas
Brain-eating amoebas lead to high rates of mortality as a result of encephalitis. In fact, more than 95% of people who develop the infection will die. Unfo...
FEB 23, 2020
Microbiology
FEB 23, 2020
COVID-19 Cases Rise Around the World
The world may be in the early stages of a pandemic, as the coronavirus called SARS-CoV-2 spreads around the world, causing an illness called COVID-19....
MAR 01, 2020
Microbiology
MAR 01, 2020
Microbes Can Make Changes to Bile Acids That Alter Gene Expression
The microbes in our digestive tract can affect human health in many ways....
MAR 23, 2020
Microbiology
MAR 23, 2020
The Loss of a Sense of Smell May be a Major Symptom of COVID-19
The loss of the sense of smell may be a symptom of a COVID-19 infection in people with no other symptoms....
MAR 29, 2020
Microbiology
MAR 29, 2020
Plastic-Eating Microbe is Found
Plastics entered the consumer market after World War II and since then it's been used in countless ways....
Loading Comments...