NOV 11, 2019 1:37 PM PST

The Mechanism of Lysostaphin, a MRSA-Killing Enzyme, is Revealed

WRITTEN BY: Carmen Leitch

Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen that is often associated with healthcare settings but can cause serious infections in anyone. These illnesses are difficult to treat because the bacterium can resist the effects of several antibiotics. Researchers at the University of Sheffield have now learned how a toxin called lysostaphin, which is produced by another bacterium called Staphylococcus simulans, can target and destroy MRSA. This knowledge can help inform the development of new treatments for antibiotic-resistant microbes, also known as superbugs.

A digitally colorized, scanning electron microscopic image depicting spheroid, MRSA bacteria (yellow) in the process of being ingested by a white blood cell known as a neutrophil, (blue). / Credit: National Institute of Allergy and Infectious Diseases

In this work, reported in Nature Chemical Biology, the scientists found that lysostaphin can zero in on the cell wall of MRSA superbugs. Lysostaphin is an enzyme, and there are two places on one part of the lysostaphin molecule that each recognize their own portion of the cell wall. This unusual attachment can cluster enzymes together on the cell wall of the MRSA pathogen. The enzymes can then trigger the breakdown of the wall, killing the superbug.

The ability of lysostaphin to stop Staphylococcal infections has already been recognized; the enzyme was discovered more than fifty years ago. However, the mechanism it uses to eliminate the pathogen was unknown. Now that we understand how it works, the knowledge can be used to create better drugs to treat the growing threat of antibiotic-resistant pathogens.

"Lysostaphin is arguably the most studied enzyme after lysozyme, so we are delighted that our research is able to explain the mechanism underpinning its potent antibacterial activity," said the study leader Dr. Stéphane Mesnage, a Senior Lecturer in Molecular Biology and Biotechnology.

"Our study explains how this enzyme is able to target and digest the MRSA bacteria and why it is so potent. Hospital-acquired infections caused by bacteria resistant to last-resort antibiotics are on the rise, but our work could lead to the development of new treatments for these superbugs that use the same targeting mechanism."

Learn more about Staph infections from the video above by the Centers for Disease Control and Prevention. There is more information about superbugs in the following video.

 

Sources: Phys.org via University of Sheffield, Nature Chemical Biology

 

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUL 30, 2020
Clinical & Molecular DX
Laser Beams Vibrate Viruses to Distinguish Them
JUL 30, 2020
Laser Beams Vibrate Viruses to Distinguish Them
  In light of the ongoing COVID-19 pandemic, the importance of rapid viral diagnostics has really hit home. Classic ...
AUG 09, 2020
Microbiology
Could Huntington's Disease be Treated Using Gut Bacteria?
AUG 09, 2020
Could Huntington's Disease be Treated Using Gut Bacteria?
The gut microbiome, the community of microbes that helps us digest food and absorb nutrients, has been shown to have an ...
AUG 13, 2020
Immunology
Antibiotics Now, Inflammatory Bowel Disease Later
AUG 13, 2020
Antibiotics Now, Inflammatory Bowel Disease Later
Taking a course of antibiotics as a baby has been linked to a spiked risk of developing inflammatory bowel disease in ad ...
AUG 28, 2020
Microbiology
As Buildings Reopen After Lockdowns, They Find Legionella
AUG 28, 2020
As Buildings Reopen After Lockdowns, They Find Legionella
Several schools and even buildings at the Centers for Disease Control and Prevention (CDC) have identified Legionella ba ...
SEP 10, 2020
Space & Astronomy
Could There Be Life on Venus?
SEP 10, 2020
Could There Be Life on Venus?
Venus is the hottest planet in our solar system, reaching 465 degrees Celcius- a temperature hot enough to melt lead. Wh ...
OCT 18, 2020
Genetics & Genomics
'Silent' Mutations Might Have Given SARS-CoV-2 an Edge
OCT 18, 2020
'Silent' Mutations Might Have Given SARS-CoV-2 an Edge
The pandemic virus SARS-CoV-2 is thought to have originated in bats, like many viruses. To make the leap and infect anot ...
Loading Comments...