DEC 12, 2019 9:20 PM PST

Gaining New Insight Into Sleeping Sickness

WRITTEN BY: Carmen Leitch

Sleeping sickness is a threat to public health in some parts of Sub-Saharan Africa. It's caused by two kinds of parasites that are transmitted by some species of tsetse flies. The Trypanosoma brucei gambiense parasite causes the vast majority of cases in western and central Africa while another parasite, Trypanosoma brucei rhodesiense, causes around two percent of cases in eastern and Southern Africa, according to the World Health Organization. The parasites can also infect animals, which act as a reservoir of infection. While many people live in areas where there are tsetse flies, not everyone in those places gets sleeping sickness, for reasons that are still unknown.

Scanning Electron Microscopy image of the parasite Trypanosoma brucei / Credit: Mick Urbaniak

When Trypanosoma brucei gambiense infects people, they may not exhibit symptoms. Once the illness starts, however, the disease is usually in an advanced state and the central nervous system is impacted. The Trypanosoma brucei rhodesiense parasite causes an acute infection that develops rapidly and also affects the central nervous system. These diseases can be fatal if left untreated.

Scientists at Lancaster University have now learned more about the illness; their findings have been reported in PLOS Pathogens. Their efforts have identified many proteins that are related to the disease and revealed more about how it's related to the cell cycle.

The action of many different proteins is affected by a modification called phosphorylation. The addition of a phosphate group can activate these proteins, and the removal can deactivate them.

This new research has found many phosphorylation sites in Trypanosome brucei proteins and identified proteins that weren't known to be part of the parasitic cell cycle. Cell cycle regulation has a major influence on parasitic virulence. This work may open up new therapeutic avenues for sleeping sickness.

"Differences in the control in cell division may be exploited to create drugs that target the parasite but do not affect the human or animal host," explained the research leader, Dr. Mick Urbaniak. "The data presented here will be of value to the trypanosome research community, and provides an important insight into mechanisms of post-transcriptional gene regulation that are likely to prove of relevance to the wider community as well."

Sources: AAAS/Eurekalert! via Lancaster University, PLOS Pathogens

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 26, 2021
Coronavirus
LIBRA-Seq ID's a Potent Antibody to Fight COVID-19
SEP 26, 2021
LIBRA-Seq ID's a Potent Antibody to Fight COVID-19
Humans can produce millions or even billions of antibodies, so only so many can be captured and screened. But those anti ...
OCT 12, 2021
Microbiology
Revealing the Efficient Enzymes of Methane-Producing Microbes
OCT 12, 2021
Revealing the Efficient Enzymes of Methane-Producing Microbes
The atmospheric levels of methane, which is known to be a potent greenhouse gas, have been steadily increasing for many ...
OCT 13, 2021
Microbiology
How Bacteria Can Work as a Kind of Antibiotic Therapy
OCT 13, 2021
How Bacteria Can Work as a Kind of Antibiotic Therapy
When we get an infection, we can take antibiotics to get rid of it. But sometimes the situation becomes more complicated ...
NOV 09, 2021
Microbiology
Can This Cat Parasite Become a Tumor Treatment?
NOV 09, 2021
Can This Cat Parasite Become a Tumor Treatment?
You may have heard of Toxoplasma gondii because it is so common. Cats carry this parasite, and anyone that cleans a litt ...
NOV 25, 2021
Immunology
Battling Bacterial Pneumonia, No Antibiotics Required
NOV 25, 2021
Battling Bacterial Pneumonia, No Antibiotics Required
Instead of flooding the body with antibiotics, what if we could program cells to fight off pathogens more effectively? T ...
NOV 19, 2021
Cell & Molecular Biology
Viral RNA Can Hijack the Host by Assuming a tRNA-Like Structure
NOV 19, 2021
Viral RNA Can Hijack the Host by Assuming a tRNA-Like Structure
Many viruses have genomes made of RNA. In human cells, messenger RNA (mRNA) molecules act as intermediates; cellular mac ...
Loading Comments...