JAN 14, 2020 6:29 PM PST

Bacterial Growth That is Truly Cultured

WRITTEN BY: Carmen Leitch

Scientists have learned that when certain bacteria are paired together, they create patterns that look like flowers. If Escherichia coli is grown on an agar plate, it barely moves across the surface. Acinetobacter baylyi, on the other hand, spreads out. But if they are grown together, the E. coli catches a ride on the A. baylyi and the bacterial colony creates a flowery pattern in the process, shown in the video below.

"We were actually mixing these two bacterial species for another project, but one morning I found a mysterious flower-like pattern in a petri dish where a day earlier I placed a droplet of the mixture. The beauty of the pattern struck me, and I began to wonder how bacterial cells could interact with each other to become artists," said the lead author of the study, Liyang Xiong, Ph.D.

In this study, which was reported in eLife, the researchers made mathematical models that account for the physical features of the two bacterial strains, including their friction on the agar plate, growth rate, and motility. They found that the pattern is formed at the boundaries of the colony, which gets unstable because E. coli accumulates there and slows the movement down; in places where less E. coli is growing, the motile bacteria can move outwards faster.

These patterns were predicted to emerge when a motile microbe is grown with a strain that doesn't move but has a higher growth rate, and if there is friction between it and the growth surface.

E. coli and A. baylyi form intricate flower-like patterns when grown together over a 24-hr. period. / Credit: BioCircuits Institute/UC San Diego

This work may help scientists learn more about the tough bacterial colonies that are known as biofilms. These hardy communities can grow on medical devices, they can be dangerous, and are hard to eliminate.

"Bacterial pattern formation has been an active area of research in the last few decades," said research leader Lev Tsimring, the Associate Director of UC San Diego's BioCircuits Institute. "However, the majority of laboratory studies and theoretical models were focused on the dynamics of single-strain colonies. Most bacteria in natural habitats live in multi-strain communities, and researchers are finally beginning to look for mechanisms controlling their co-habitation. While a number of biochemical mechanisms of inter-species communication and cooperation have been identified, we found that surprising complexity may result from purely physical interaction mechanisms."


Sources: AAAS/Eurekalert! via University of California (UC) San Diego, eLife

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
MAY 27, 2020
Cell & Molecular Biology
A Deeper Understanding of How Some Bacterial Toxins Interact With Cells
MAY 27, 2020
A Deeper Understanding of How Some Bacterial Toxins Interact With Cells
The surfaces of cells are decorated with receptors, and the interactions between receptors and their binding partners ar ...
JUN 24, 2020
Neuroscience
Prenatal Stress May Influence Infant Gut Bacteria
JUN 24, 2020
Prenatal Stress May Influence Infant Gut Bacteria
Although prenatal stress has previously been associated with infant growth and development, exactly how they are linked ...
JUN 29, 2020
Microbiology
Childhood Vaccine May Help Prevent Severe COVID-19 Cases
JUN 29, 2020
Childhood Vaccine May Help Prevent Severe COVID-19 Cases
Vaccines that contain live attenuated viruses may be giving people some protection from serious cases of COVID-19 that i ...
JUL 12, 2020
Microbiology
Our Flu Response Is Influenced by Previous Exposures
JUL 12, 2020
Our Flu Response Is Influenced by Previous Exposures
The flu is caused by a respiratory virus, which evolves from year to year. Three kinds of influenza viruses infect human ...
JUL 27, 2020
Microbiology
Vikings Carried, and Helped Spread Smallpox
JUL 27, 2020
Vikings Carried, and Helped Spread Smallpox
A global vaccination effort led to the official eradication of smallpox, but not before it killed over 300 million peopl ...
JUL 27, 2020
Chemistry & Physics
Cobalt-doped titanium-dioxide stops the reproduction of listeria monocytogenes
JUL 27, 2020
Cobalt-doped titanium-dioxide stops the reproduction of listeria monocytogenes
Scientists suggest adding cobalt-doped titanium-dioxide (CoO-TiO2) to foods in order to prevent the spread of listeria, ...
Loading Comments...