SEP 21, 2015 6:11 PM PDT

Electrons Keep Long Distance Relationships Alive

WRITTEN BY: Kerry Evans
Researchers studying the symbiotic relationship between methane-oxidizing archaea and sulfate-reducing bacteria have made a surprising discovery.  The team, led by Caltech geobiology professor Victoria Orphan, found that these symbiotic microbes share energy in the form of electrons.  This is the first report of such interspecies electron transport, and it explains how these microbes are able to share resources over relatively long distances.

Species of Geobacter use extracellular appendages (blue) to transfer electrons.
The archaea and bacteria aggregate to form “consortia” in marine and freshwater sediments that are low in oxygen but high in methane and sulfur.  
The consortium performs “anaerobic oxidation of methane” (AOM), a process that provides energy for the consortium and drastically decreases the amount of methane released into the atmosphere. (Methane is a powerful greenhouse gas, as explained by the video below.)





Orphan and her team knew that microbes in the consortium worked together to perform AOM, and they predicted that cells in the consortium would be organized in a way that allowed them to share metabolites by simple diffusion.  That is, metabolites would essentially drift between cells.  The team used an isotope tracer to determine which cells within the consortium were metabolically active.  What they found, was that the microbes shared metabolites effectively regardless of their spatial organization.  In other words, it appeared that metabolites were being shared between cells across relatively long distances, a finding that couldn’t be explained by simple diffusion.  The team turned to computer modeling and verified that the only metabolites able to cross relatively long distances were electrons.  

While interspecies electron transfer had never been observed, electron transfer among the genus Geobacter is well characterized.  These bacteria use extracellular multi-heme cytochrome (MHC) proteins to transport electrons between cells.  Orphan and her team searched for, and found, MHC-like genes in their methane-oxidizing archaea. (Only a few methane-oxidizing archaea genomes are sequenced because they are difficult to grow.  Some species only reproduce four times a year!)  They also used electron microscopy and a diagnostic stain for MHCs to show that, like Geobacter, their methane-oxidizing archaea expressed cell-surface MHCs.

Taken together, Orphan proposes a model in which methane is oxidized and the resulting electrons are transferred to extracellular MHC proteins.  From there, the electrons confer conductivity to the extracellular matrix separating the methane-oxidizing bacteria and their sulfate-reducing partners.  



Sources: Caltech, Nature, Wikipedia
 
 
About the Author
  • Kerry received a doctorate in microbiology from the University of Arkansas for Medical Sciences.
You May Also Like
APR 21, 2020
Genetics & Genomics
APR 21, 2020
A 2020 Census for Microbes in Florida Springs
Water sources are vital to communities and wildlife alike, and it's important to monitor their health.
APR 26, 2020
Cell & Molecular Biology
APR 26, 2020
Nose Cells Found to Be Likely SARS-CoV-2 Entry Points
This work may help explain why the virus is so easy to transmit.
MAY 04, 2020
Neuroscience
MAY 04, 2020
Certain Gut Bacteria Improves Memory in Mice
Researchers from the US Department of Energy national laboratories have found that certain gut bacteria are able to impr ...
MAY 11, 2020
Microbiology
MAY 11, 2020
Bacteria Can Tumble Their Way Out of Traps
We share the world with vast numbers of microbes, many of which are able to move around freely in the environment. Most, ...
MAY 12, 2020
Microbiology
MAY 12, 2020
Understanding How Giant Viruses Can Infect Cells
Melting permafrost has been revealing some remarkably well-preserved and extremely old stuff, like a prehistoric puppy a ...
MAY 21, 2020
Clinical & Molecular DX
MAY 21, 2020
Fidget Spinner Diagnoses Infections
The fidget spinner toy craze took the world by storm — a small, boomerang-shaped gadget that rotates hypnotically ...
Loading Comments...